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Abstract

Although thousands of languages are spoken worldwide, AI assistants powered by
Large Language Models perform well only in those well-represented in terms of avail-
able data. Support for the remaining low-resource languages can be added to the
existing Large Language Models through various adaptation techniques. However,
the limited amount of high-quality training data favours data-efficient approaches,
which this project investigates in the context of African languages. The initially
studied tokeniser adaptation techniques allow for extending the vocabulary of a pre-
trained model with the optimal number of new tokens from the previously unseen
language. Subsequent experiments in data-efficient model adaptation explore how
combining continuous pre-training and instruction-tuning may lead to more accu-
rate cross-lingual model capabilities. Furthermore, the influence of adding English
samples to the training dataset is studied. Although the model adaptation results
are inconclusive, they open several directions for further research and underline the
need for more efforts in low-resource natural language processing.
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Chapter 1

Introduction

1.1 Problem Description

In recent years, Large Language Models (LLMs) demonstrated remarkable natu-
ral language understanding and human-like text generation capabilities. They have
been subsequently applied to classical Natural Language Processing (NLP) tasks
and, notably, conversational chatbots. Popular LLM-powered services such as Chat-
GPT1 and Microsoft CoPilot2 quickly became default tools used by individuals in
everyday tasks and enhancing productivity within companies. However, the benefits
of these technological advances are not universally distributed. A significant dispar-
ity exists in the performance of LLMs across languages, depending on their presence
in the model training data (Li et al., 2024), which nowadays come primarily from
online sources such as Common Crawl repositories.3 Hence, this performance gap
is particularly evident between languages represented well on the internet (such as
English, French, German, and Chinese) and the so-called low-resource languages,
for which limited data and research attention are available (e.g. Igbo, Quechuan,
Guarani). However, although poorly represented, low-resource languages are used
by large numbers of native speakers from all around the world (e.g. Igbo – 44 mil-
lion, Quechuan – 7 million, and Guarani – 6.5 million). On the other hand, many
European languages are spoken by populations of similar size yet do not suffer from
limited resources (e.g. Dutch – 30 million, Swedish – 13 million). Hence, the lack of
adequate linguistic resources leads to uneven access to AI technologies, contributing
to exclusion and marginalisation.

While there are significant efforts to bridge the gap between the two language
groups, the low-resource setting makes the problem complex. It requires further

1https://chat.openai.com
2https://copilot.microsoft.com
3https://commoncrawl.org
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research in several areas, including data annotation, benchmark development and
data-efficient training. This project focuses on cross-lingual transfer learning and
studies language model adaptation techniques applied to a subset of African lan-
guages. Such methods use existing, pre-trained models and leverage various strate-
gies to link the already existing model capabilities with the ability to generate text
in a new language (Artetxe et al., 2020). Combining the established adaptation
methods such as those of Yong et al. (2023) with recently proposed improvements
by Csaki et al. (2023) and continuously growing availability of training data (Oladipo
et al., 2023), this project poses three major research questions and gradually devel-
ops corresponding answers.

1.2 Research Questions

Language Model adaptation usually involves a modification of its tokeniser as well as
model fine-tuning (Artetxe et al., 2020; Aji et al., 2020). While the former is usually
performed through token addition and the model’s word embedding matrix expan-
sion, recently, a new scheme based on token replacement has been proposed (Csaki
et al., 2023). Moreover, the quality of language adaptation of Large Language
Models benefits from a large amount of data in the adaptation language (Chen
et al., 2023). While there have been numerous adaptation studies for high-resource
languages such as (Yong et al., 2023), limited research explicitly explores the adap-
tation to several low-resource African languages. Finally, recent works have shown
a positive influence of using a large amount of prompt-response formatted data on
language adaptation (Csaki et al., 2024). However, there needs to be evidence that
this approach works in a data-scarce environment.

This project aims to produce answers to the following three research questions
(RQs):

• RQ 1: What is the difference in the final model performance between
tokeniser adaptation based on token replacement and token addition
schemes?

• RQ 2: What is the influence of LLM adaptation in a low-resource
setting on a set of downstream tasks in selected African languages?

• RQ 3: Does a combination of task-agnostic continuous pre-training,
followed by instruction-tuning, achieve a better model adaptation
performance for low-resource languages than the former solely?
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1.3 Report Structure

The structure of this report reflects the research nature of the project. Following
this introduction, Chapter 2 introduces an overview of the necessary background
information and an extensive review of the related works. A brief overview of the
available data and evaluation benchmarks is supplied in the same chapter. Chapter 3
comprehensively describes the proposed adaptation methodology. It focuses on both
tokeniser and model adaptations, providing the necessary high-level description of
the implementation. Subsequently, Chapter 4 describes a concrete application of
the adaptation methodology to a pre-trained Large Language Model using four
African languages. The chapter includes a detailed description of the experimental
and evaluation setup, allowing reproduction of the obtained results presented and
discussed in Chapter 5. Finally, Chapter 6 summarises the contributions of the
project and considers future directions of research.

Additional experimental setup information can be found in Appendix A, while
the detailed results are presented in Appendix B. Finally, Appendix C contains
additional project deliverables, including the Project Plan and the Interim Report.
All of the experimental code required for the reproduction of the results have been
made publicly available on GitHub.4 The adapted tokenisers and language models
are available on HuggingFace. 5

4https://github.com/TheRootOf3/low-resource-language-model-adaptation
5https://huggingface.co/TheRootOf3/low-resource-language-model-adaptation
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Chapter 2

Context

2.1 Background Information

2.1.1 Language Modelling and Word Embeddings

Language modelling is a fundamental task in natural language processing, essential
to various applications such as machine translation, question answering and text
summarisation. The grounds for the field have been set by the application of Shan-
non’s information theory to measuring the entropy of a language (Shannon, 1951).
A language model (LM) predicts the likelihood of sequences of words in a language.
In particular, such a model can be used to predict the probability distribution of
the next word wn in a given context sequence w1, w2, ..., wn−1:

P (wn|w1, w2, ..., wn−1). (2.1)

Importantly, the probability of a sequence can be factorised into a product of
the conditional probabilities:

P (w1, w2, ..., wn) =
n∏

i=1
P (wi|w1, w2, ..., wi−1) (2.2)

There are two common approaches to language modelling: purely statistical – based
on word or sequence frequencies and statistical models, and neural – leveraging
neural networks, which work particularly well for learning complex patterns in text.
While they work differently, both groups require a significant dataset of text samples
used for model training. One of the simplest statistical language models is the Bi-
gram model, which approximates the probability of the next word using exclusively
the probability of its predecessor, leveraging the Markov assumption:

P (wn|w1, w2, ..., wn−1) ≈ P (wn|wn−1). (2.3)
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As an example, modelling a sequence I love dogs and using the Eq. 2.2 would
involve the following computations:

P (I love dogs) ≈ P (I|<bos>) × P (love|I) × P (dogs|love),

where <bos> is a special character indicating the beginning of a sequence. How-
ever, predicting the next word given only its predecessor has several issues, including
simplicity in capturing dependencies in text, specifically the long-term ones. One
solution to this problem is using more context words, leading to an n-gram model,
which predicts the next word given the context of n words. While using 3-gram and
4-gram models improves the language modelling performance, this approach scales
exponentially with n. On the other hand, a neural language model can be used to
model longer sequences without explicitly learning the probability distribution over
n consecutive words. While such models may differ in used neural architectures,
they share a common optimisation goal of minimising the negative log-likelihood of
the word sequence from Eq. 2.2, given the model parameters θ:

arg min
θ

−
n∑

i=1
log P (wi|w1, ..., wn−1; θ). (2.4)

While reasoning about words is plausible for humans, computers benefit from an
alternative representation. A simple approach is to represent a pre-defined set of
words using sparse one-hot encodings. In this method, a word is assigned an integer
k and is then represented as a one-hot vector v with 1 in its kth entry (vi=k = 1) and
zeros everywhere else (vi ̸=k = 0). However, an average vocabulary V of a language
model has tens of thousands of words, leading to a significant inefficiency in word
representation. Furthermore, such word representations do not convey any semantic
information.

In order to introduce meaning to word representations, the concept of word
embedding has been introduced. Methods such as word2vec or GloVe add structure
to the embedding space and represent words as multi-dimensional dense vectors.
They exhibit relations, which can be further translated into semantic and syntactic
relations between corresponding words. Nevertheless, the same word may have very
different meanings depending on the context – e.g. the word park in Let’s go to
the park vs You can’t park here. Therefore, advanced neural architectures have
been developed to tackle this issue, resulting in contextual embeddings that adjust
the meaning of words depending on their context.

5



2.1.2 Text Tokenisation

Dividing input text into sequences of words is not a straightforward task. A simple
approach to this problem is to use the whitespace character as a natural word
boundary. However, this has several disadvantages, including ignoring punctuation
(e.g. both why? and Anna’s would be considered single words) and splitting multi-
word entities, such as New York. Critically, some languages, such as Chinese, do
not use whitespace characters as word separators. Therefore, there is a need for a
different scheme, possibly resulting in sub-word or multi-word entities, called tokens.
Similarly, an algorithm splitting text into a sequence of tokens is called a tokeniser.

While the whitespace tokenisation does not work well with raw text, samples can
be first normalised to remove unwanted punctuation or convert words to a standard
format (e.g. lowercase). Furthermore, adding a set of tokenisation rules (e.g. keep a
dot within digits, remove it if it is at the end of a sentence.) may result in sensible
word split, such as:

Dogs are barking, I am thinking.

[dogs, are, barking, i, am thinking]

Moreover, techniques such as lemmatisation and stemming can be used to split
words into morphemes further, reflecting their semantics and the syntax of a lan-
guage better:

Dogs are barking, I am thinking.

[dog, s, are, bark, ing, i, am, think, ing]

With such tokenisation, a language model may learn that the token ing repre-
sents some continuity of action when combined with other tokens. Furthermore, the
same tokenisation scheme applied to a new, previously unseen word, such as sniffing,
may lead to a split sniff + ing. Although exposed to a new word, the model could
infer that sniffing has something to do with the aforementioned continuity.1

Using a text tokeniser along language models requires deciding the contents of
its fixed-size vocabulary V . One approach is to use the most frequent k tokens
from a tokeniser training dataset, which represents the distribution of the language.
Nevertheless, such a rule-based tokeniser exposed to a previously unseen word (e.g.
barkingandsniffing) will mark it out-of-vocabulary (OOV) and either remove it
or replace it with a special unknown token <unk>. This is a particular concern in
a cross-lingual setting when a tokeniser designed for one language is used to to-
kenise texts in another. It is even more severe if languages differ in script (e.g.

1As well as dogs, of which the author is a particular admirer.
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Latin, Arabic, Ge’ez). Hence, rule-based tokenisers do not scale well across lan-
guages without language-specific rules. Instead, subword tokenisers constructing a
vocabulary based on statistical properties of the training dataset can be used (e.g.
Byte-Pair Encoding, Unigram model).

Byte-Pair Encoding

Byte-Pair Encoding (BPE) is a data compression algorithm (Gage, 1994). It has
been adopted as a tokenisation scheme because of it support for sub-word vocabulary
and it does not no dependence on hardcoded tokenisation rules (Sennrich et al.,
2016). A BPE tokeniser T gradually builds its vocabulary V from the small set of
initial tokens until the earlier specified fixed vocabulary size k is reached (usually
between tens of thousands and hundreds of thousands of tokens). Instead of using
hardcoded rules, the algorithm learns tokens statistically, in the order corresponding
to their frequency in a training dataset D. Each learned token is a combination of
initial tokens or other already learned tokens. Such a combination is called a merge,
and while the new token is added to the vocabulary V , a merge is added to the
merge rules list R. Notably, the order of both the token and the merge rule matters.
The high-level BPE tokeniser training algorithm is presented as follows:

1. Select the initial vocabulary V (usually the 256 ASCII characters) and the
maximum vocabulary size k. Initialise the empty merge rule list R.

2. Split the training dataset D into initial tokens (character-level).

3. Find the most frequent combination of two adjacent tokens ti, tj in D.

4. Create a new token tij as a merge of ti and tj. Add tij to the merge rule list R

5. Replace all adjacent ti, tj in D with the new token tij.

6. Go back to 3. until |V | = k

As an example, the following one-sample training dataset D can be considered:

log frog blog dog,

the initial vocabulary V = [b, d, f, g, l, o, r] and k = 10. Splitting the
sentence into initial tokens produces the following:

l o g f r o g b l o g d o g.

Counting the most frequent pair of two tokens, it is o g – 4 times. The first
pair gets merged into a new token og, which is added to V , while the merge rule is
added to R. After replacing o g with og, V , R and D look as follows:
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l og f r og b l og d og.

V = [b, d, f, g, l, o, r, og], R = [o g]

Continuing, the next most frequent token pair is l og, occurring twice:

log f r og b log d og.

V = [b, d, f, g, l, o, r, og, log], R = [o g, l og]

Finally, all the remaining pairs occur only once, but following the alphabetical
order b log is merged and added to the vocabulary.

log f r og blog d og.

V = [b, d, f, g, l, o, r, og, log, blog], R = [o g, l og, b log]

When a trained tokeniser T is used to tokenise a text sample, it splits it into
a sequence of initial tokens and subsequently replaces their combinations following
the list of merge rules R.

A particularly advantageous aspect of BPE is that depending on the choice of
initial vocabulary, it may eliminate the out-of-vocabulary problem. Using BPE
across byte boundaries (byte-level BPE), allows to specify a small initial vocabulary
of 256 values a byte can take and split longer Unicode characters into byte-level
elements. While the Unicode characters are likely to be "reconstructed" and added
to the vocabulary given their frequency, this trick permits avoiding using the <unk>
token for OOV.

One of the tokenisation metrics is the token per word ratio, called tokeniser
fertility rate. The ratio should be calculated on a previously unseen tokeniser dataset
with a known number of words, such as a well-annotated treebank. Lower fertility
means that words are, on average, split into less but longer tokens. This has several
practical benefits in further language modelling. In particular, tokens consisting of
multiple characters tend to have more semantic meaning than those of one or two
characters. Furthermore, relatively low fertility means that longer text sequences
can fit into the context window of the model, a particularly useful feature given the
recent applications of Large Language Models to Retrieval-Augmented Generation
(RAG) (Lewis et al., 2020).
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2.1.3 Large Language Models

The recent advances in deep learning and available hardware allowed for a rapid
increase in the size of neural language models. Hence, the term Large Language
Models (LLMs) has been coined to refer to neural language models with a signif-
icant number of parameters2 and trained on large text corpora. Most language
models are based on the decoder of the Transformer neural architecture (Vaswani
et al., 2023). Such models are referred to as generative and autoregressive, mean-
ing they can generate new sequences and perform this by first predicting the next
word given some context and then using the predicted word for further predictions.
Hence, they are trained with a causal language modelling objective, as opposed to
masked language models, such as BERT (Devlin et al., 2019), which learn word rep-
resentations using bidirectional context (past and future words in a sequence) and
therefore are not strict language models. To adapt a pre-trained LLM to a particular
downstream task (e.g. question answering, machine translation), such a model can
be fine-tuned on task-specific data, leveraging transfer learning. Critically, (Brown
et al., 2020) showed that scaling model size induces emerging behaviours – model
capabilities, which were not their explicit training objectives. Furthermore, such
models have In-Context Learning (ICL) capabilities (Min et al., 2022), meaning
they can be prompted to produce responses to user-specified queries by providing
them as the context sequence. A sufficiently large model can subsequently infer
from such context when performing tasks on which it was not initially trained. ICL
can be used in a zero-shot setting, where only a prompt is provided, or a few-shot
setting, where a prompt and a few examples are supplied to the model. Examples
of in-context learning prompts are presented in Table 2.2.

Model No. Params Training Tokens Year
OPT-1.3B (Zhang et al., 2022) 1.3B 0.18T 2022
Bloom 1B7 (Workshop et al., 2023) 1.7B 0.41T 2022
Olmo 1B (Groeneveld et al., 2024) 1B 2T 2024
GPT-3 (Brown et al., 2020) 175B 0.3T 2020
PaLM 2 (Anil et al., 2023) 540B 0.78T 2022
Llama 2 (Touvron et al., 2023) 70B 2T 2023

Table 2.1: Examples of Large Language Models. Notably, Bloom1B7 and PaLM
2 are multilingual models trained on a mix of data in 46 and over 100 natural
languages, respectively.

2At the moment of writing this report, a model is considered large if it has about one billion
parameters. However, the definition is likely to evolve, given the rapid progression of the field.
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Nonetheless, LLMs require huge amounts of training data (order of 1012 bytes of
text) and equally large amounts of dedicated computational resources. Hence, most
are trained on almost exclusively English datasets containing no or minimal texts in
African languages. As an example, the pre-training dataset of GPT-3 consisting of
570GB of text,3 out of which 93.68% was English, 1.02% French and only 0.0011%
Swahili, with no texts in Yoruba. This directly influences the performance of such
models in these languages. A selection of LLMs is displayed in Table 2.1.

Setting Input Prompt
Zero-shot example Translate the following sentence to Polish:

English: I love dogs.
Polish:

Few-shot example Translate the following sentence to Polish:
(num shot = 2)

English: I love dogs.
Polish: Kocham psy.

English: Dog is man’s best friend.
Polish: Pies jest najlepszym przyjacielem człowieka.

English: Life is better with a dog by your side.
Polish:

Table 2.2: An example of in-context learning with a zero-shot and a few-shot prompt
for machine translation.

Generative Pre-Trained Transformer Architecture

The overall neural architecture of most Large Language Models follows the design of
the Generative Pre-trained Transformer (Radford and Narasimhan, 2018). While the
implementation details vary, reflecting modifications that increase the computational
and modelling performance, the overall design is maintained. According to the
Transformer’s nomenclature, the GPT model is a decoder that accepts a fixed-length
sequence of tokens and predicts a probability distribution over the next word. The
entire neural network can be split into different elements (Fig. 2.1), and while they
use similar building blocks, each element has a different function:

• Word Embeddings4 E ∈ R|V |×emb, where |V | is the model vocabulary size,
3Data from https://github.com/openai/gpt-3
4The term Word Embeddings is used for historical reasons. While it suggests that embeddings

represent words, LLMs split words into tokens, which are often sub-words or span over word
boundaries.
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and emb is the embedding dimension. Word embeddings are direct represen-
tations of tokens in the initial latent space of a model and, depending on |V |,
may constitute a significant share of all model parameters.

• Positional Encodings P ∈ Rctx×emb, where ctx is the length of the input
sequence (model context). Positional encodings are either constant or learn-
able and are added to word embeddings to reflect their positions in the input
sequence.

• Transformer Blocks, usually repeated multiple times and stacked vertically
group of elements.

– Multi-Head Masked Attention, a component used to capture mutual
dependencies and similarities between the latent representation of tokens.
Each attention head assigns a set of keys, queries and values to each ele-
ment in a sequence using a set of corresponding parameters WK , WQ, WV .
Intuitively, they are applied to calculate how much each token representa-
tion in a sequence “attends” to all the previous ones, while multiple heads
are used to learn many attention patterns. Subsequently, the attention
outputs are projected for the further feedforward neural network.

– Feedforward Neural Network, a shallow linear neural network neces-
sary for transforming the outputs of the attention mechanism. A trans-
former block would only scale the input token representations without
this component.

– Layer Normalisation Layers, Dropout Layers and Residual Con-
nections, which are used for improved optimisation stability and allow
for training deeper networks.

• Language Modelling Head, a final element mapping the final network out-
puts into a normalised vector in R|V |. Depending on the model architecture,
this element can be implemented as an independent linear neural network layer
or reuse the word embeddings. A softmax normalisation is finally applied to
represent the probability distribution over the next token.

The architecture size can be modified vertically (more transformer blocks) and
horizontally (larger model context ctx and embedding space emb, more extensive
vocabulary |V |). A decent understanding of the design and function of each of these
components and tokenisation is critical to comprehending the model adaptation
method proposed in this work.
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Figure 2.1: The neural architecture of GPT2 (Radford et al., 2019).

2.1.4 Overview of Chosen African Languages

The lack of textual resources is a common problem for most languages spoken lo-
cally in Africa. While there are significantly more low-resource languages than those
with easily available data, the scope of this study needs to be narrowed. The choice
of the explored languages is motivated by the availability of text corpora, suitable
benchmarks and the prior work in the field. In particular, significant progress in
up-sourcing has been achieved through the collaboration between the UCL Natural
Language Processing group members and the NLP researchers from Masakhane5 – a
grassroots organisation working specifically with African languages. Hence, building
on the group’s efforts and leveraging the connection to the African network make
it natural to focus on the languages they particularly explored. Therefore, Hausa,
Yoruba, and Igbo are selected. In addition to these three national languages of
Nigeria, Amharic – spoken in Ethiopia, is chosen to study how the proposed adap-
tation framework applies to languages with a non-Latin script. Table 2.3 presents
an overview of the chosen languages.

5https://www.masakhane.io
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Language Code Script Family Subgrouping #Speakers
Amharic amh Ge’ez Afro-Asiatic Ethio-Semitic 60M
Hausa hau Latin Afro-Asiatic Chadic 88M
Igbo ibo Latin Atlantic-Congo Benue-Congo 44M
Yoruba yor Latin Atlantic-Congo Benue-Congo 47M

Table 2.3: Overview of chosen African languages. Numbers of speakers refer to both
L1 and L2 speakers, and come from Wikipedia. Notably, all languages considered
have more L1 and L2 speakers than German.

2.2 Related Works

2.2.1 LLM Language Adaptation Methods

Due to the large amount of data required for training a Large Language Model,
developing dedicated models for low-resource languages is not viable. Hence, multi-
lingual pre-training is one approach to developing Large Language Models for low-
resource languages. Numerous attempts include models such as Bloom (Workshop
et al., 2023), XLM-R (Conneau et al., 2020), mT5 (Xue et al., 2021), and PaLM 2
(Anil et al., 2023), which have been trained on a mix of English datasets and data
in other languages. Although models trained this way display benefits in mono-
and cross-lingual tasks, adding support for a language previously missing from the
pre-training dataset involves costly re-training of the entire model. Furthermore,
while these models display a decent performance in cross-lingual scenarios, Chang
et al. (2023) showed that their performance in monolingual tasks improves only up
to a certain number of added languages, after which it degrades. Nonetheless, the
limited amount of language data is the primary reason for the poor performance of
most multilingual LLMs in low-resource languages. Hence, a concept of model adap-
tation has been introduced, where an already existing pre-trained language model
(possibly multilingual) is adapted to a new language through fine-tuning and related
data-efficient methods.

One of the challenges in such adaptation is the often distinct vocabulary used
in the model and the new language. Works such as (Artetxe et al., 2020; Aji et al.,
2020; Pfeiffer et al., 2021) show the possibility of adding new tokens to a tokeniser
and re-training the word embeddings in a model to reflect the new vocabulary. By
freezing some or all of the remaining parameters (also referred to as the transformer
body) and continuously pre-training with the original objective but data in a new
language, the authors matched the performance of models pre-trained jointly on a
bilingual dataset. Furthermore, Ács (2019) extensively studies a BPE tokeniser fer-
tility using treebanks in various languages. Subsequently, Rust et al. (2021) explore
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the performance gap between multilingual and monolingual language models con-
cerning their performance on monolingual tasks. The authors not only find that a
designated monolingual tokeniser is key to better performance but also confirm that
replacing the multilingual model’s tokeniser with a dedicated monolingual version
improves the model’s performance.

Yong et al. (2023) demonstrate adapting a series of BLOOM models to new
languages, following different fine-tuning strategies. Comparing the continuous pre-
training with parameter-efficient fine-tuning techniques such as MAD-X (Pfeiffer
et al., 2020) or (IA)3 (Liu et al., 2022), they discover that adapter-based methods
outperform the continuous pre-training only when the models under adaptation are
sufficiently large (>3B). Furthermore, they experimentally show that a dataset of at
least 100M tokens is required for a successful adaptation. On the other hand, Chen
et al. (2023) extend the notion of adaptation even further. They show that regularly
resetting model embeddings during pre-training leads to an increased language plas-
ticity of the model, making it more suitable for further language adaptation. This
method allows for a language and task adaptation through a sole training of the new
embedding layer (for a new language) and fine-tuning the transformer body (for a
dedicated downstream task). Notably, they report a significant increase in model
performance when the size of the language adaptation dataset reaches 10M tokens.
However, this method requires an appropriately pre-trained model, which is out of
this project’s scope.

In their work, Csaki et al. (2023) experiment with instruction-tuning as an
adaptation technique for two high-resource languages: Hungarian and Thai. Their
method involves initial continuous pre-training of a model in task-agnostic language
data, followed by instruction-tuning with prompt-response formatted dataset. Fur-
thermore, they experiment with replacing tokens in the model’s vocabulary. Al-
though promising results were achieved, their method uses huge datasets (100GB
per language) unavailable in the low-resource setting. Finally, Lin et al. (2024) show
a joint adaptation to more than 500 languages through continuous pre-training of
the base 7B model. The proposed method achieves the best results for a range of
low-resource methods on few-shot text classification tasks. While it does not use
instruction-tuning datasets, the authors tune only a small set of overall model pa-
rameters and the embedding matrix.

Parameter-efficient fine-tuning techniques (PEFT) are used exceptionally well
in data-deficient scenarios. Inserting adapter parameters into the architecture of
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pre-trained models allows updates of a limited selection of model parameters with
fewer steps, requiring less training data. One example is Low-Rank Adaptation
(LoRA) (Hu et al., 2022), which decomposes selected parameters into products of
lower-rank matrices. LoRA updates only the decompositions, freezing the rest of the
model parameters. Authors motivate the method with an intuition that optimising
a full model updates a limited number of parameters. Critically, they show that fine-
tuning only the LoRA-targetted attention keys and queries matches the performance
of full model fine-tuning. While LoRA replaces parameters with smaller alternatives
for fine-tuning, MAD-X introduces bottleneck adapters between existing parameters.
Such an approach may limit the model’s performance, and hence, (IA)3 introduces
new learnable parameters for element-wise rescaling of activations in feedforward
layers. Given that PEFT methods are used in some works for language adaptation,
studying their further application in the low-resource regime may be an exciting
research direction.

2.2.2 Training Data

High quality data comes from human-crafted corpora such as Project Gutenberg6,
Wikipedia, or historically, the Brown Corpus. However, the lack of similar resources
for many languages poses a significant challenge. While automatic machine transla-
tion approaches could be used to translate English corpora to other languages, they
overlook the important cultural context, which is often implicitly present in locally
used languages. Another difficulty in developing human-crafted corpora is the need
for a diverse set of native speakers. Despite the superior quality of manually crafted
data, using such corpora no longer suffices in training the growing size LLMs. In-
stead, the largest source of training data are CommonCrawl7 repositories containing
archived internet web pages. Given its nature, the CommonCrawl corpus contains
data in most low-resource languages as long as web pages are written in those lan-
guages. However, the data is heavily polluted with non-natural texts, undesired
content and duplicates. Therefore, several cleaned versions of the CommonCrawl
dataset have been published, including mC4 (Raffel et al., 2019), a multilingual ver-
sion of the Colossal Clean Crawled Corpus (C4). The corpus contains data for 108
languages, including some spoken in Africa – particularly Amharic, Hausa, Igbo and
Yoruba. Furthermore, Oladipo et al. (2023) further revised and extended the mC4
contents, focusing exclusively on African languages. Their analysis suggests a good
quality of mC4 contents and results in a new document-level dataset – WURA. On
the other hand, ImaniGooghari et al. (2023) published Glot500-c, a large combina-

6https://www.gutenberg.org
7https://commoncrawl.org
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tion of available multilingual datasets covering 500 languages with a particular focus
on those lacking good quality training data sources.

On the other hand, instruction-following capabilities of a model can be in-
duced through instruction-tuning – a set of techniques aligning a pre-trained lan-
guage model to respond to user instructions. These techniques include simple fine-
tuning as well as methods based on Reinforcement Learning with Human Feedback
(RLHF) (Christiano et al., 2023; Ouyang et al., 2022). Usually, instruction-following
is achieved by training on prompt-response formatted data. At the beginning of
this project, a limited number of instruction-tuning datasets were available in low-
resource languages, while almost all of them were machine-translated. However,
the recently published Aya Dataset (Singh et al., 2024) contains varying prompt-
response formatted samples for the selected African languages.

2.2.3 Model Evaluation & Benchmarks

Large Language Models can be evaluated using intrinsic and extrinsic metrics. While
intrinsic evaluation shows how well the model achieves the training objective – lan-
guage modelling, and therefore minimising the negative log-likelihood, the extrinsic
evaluation involves measuring model performance on a set of downstream tasks. The
most common intrinsic metric is perplexity (PPL), defined as the exponentiated av-
erage negative log-likelihood of a sequence of tokens w1, w2, ..., wn:

PPL(w1, w2, ..., wn) = e− 1
n

∑n

i=1 log P (wi|w1,w2,...,wi−1) (2.5)

Intuitively, perplexity measures model certainty about the next predicted word.
Measuring model perplexity requires a sequence of tokens, which was not present
in the training dataset. Furthermore, such a sequence should have a similar dis-
tribution to the training dataset, reflecting the training objective well. Hence, a
dataset used for model training is usually split into a training part – fed to the
model for weights optimisation, and a validation part – used to measure the model
performance on unseen data.

On the other hand, metrics used in the extrinsic evaluation are task-related,
while such evaluations require task-specific datasets. The development of bench-
mark datasets for low-resource languages is crucial to the progression of the field,
given the need for an independent and fair evaluation of the proposed methods. Re-
searchers from Masakhane have contributed to the work on developing benchmarking
datasets for African languages in common NLP tasks, such as topic classification,
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question answering, and named entity recognition (NER). In their work, Ojo et al.
(2024) evaluate the largest LLMs with the In-Context Learning approach. While
the models are prompted in a zero-shot setting, samples from benchmark datasets
can also be supplied as examples in a few-shot regime and used for model fine-tuning
preceding the evaluation. Table 2.4 presents the available benchmarks for African
languages.

Benchmark Task amh hau ibo yor
AfriSentia Sentiment Classification ✓ ✓ ✓ ✓
AfriQAb Question Answering ✓ ✓ ✓
MAFAND-MTc Machine Translation ✓ ✓ ✓ ✓
AfriMTEd Machine Translation ✓ ✓ ✓
MasakhaNewse Topic Classification ✓ ✓ ✓ ✓
SIB-200f Topic Classification ✓ ✓ ✓ ✓
MasakhaNERg Named Entity Recognition ✓ ✓ ✓ ✓

Table 2.4: Available benchmarks for downstream tasks in African languages. a:
(Muhammad et al., 2023), b: (Ogundepo et al., 2023), c: (Adelani et al., 2022a), d:
(Wang et al., 2024), e: (Adelani et al., 2023), f : (Adelani et al., 2024), g: (Adelani
et al., 2022b).
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Chapter 3

Methodology & Implementation

The proposed methodology of adapting pre-trained Language Models trained in a
base language to a previously unseen target language consists of two essential stages:
Tokeniser Adaptation and Model Adaptation. The former introduces modifications
to the tokenisation scheme by replacing or adding tokens specific to the target lan-
guage. Furthermore, it adjusts the embedding parameters of the pre-trained model
accordingly. On the other hand, Model Adaptation involves continuous pre-training
of the model and subsequent instruction tuning on language-specific datasets. Since
this study focuses on model adaptations to African languages, both stages assume
a low-resource and low-compute environment.

Figure 3.1: Overview of the adaptation methodology.

3.1 Tokeniser Adaptation

A Language Model based on learnable embedding parameters models the text through
tokenisation and subsequent mapping to the embedding space. Using multi-dimensional
representations of tokens to learn relations between them, the model implicitly
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achieves the language modelling objective and can generate new text given the pro-
vided context. Hence, the embedding space of a trained model is tightly related to
the text tokenisation scheme used during model training.

However, applying two different tokenisation schemes to the same input text
results in two distinct sequences of tokens (e.g. think + ing vs thin + king).
Furthermore, this leads to different embedding space representations of the original
text and, consequently, inference abilities of a model. In particular, using a tokeniser
trained in language A to tokenise text in a different language, B may result in to-
kenisations which do not follow the token distribution of the latter and, therefore, do
not reflect its morphological properties. Subsequently, such tokenisations are likely
to fall out of the distribution of token sequences learned by the model, resulting in
inaccurate inference in practice. Intuitively, the set of tokens an English-dedicated
tokeniser can produce includes common English morphemes or words. However, the
same tokeniser applied to text in a language with very different vocabulary, such as
Yoruba, will not result in a tokenisation consisting of Yoruba morphemes or words
but mostly meaningless (in the sense of Yoruba language) combinations of letters
representing English tokens. The lack of Yoruba-specific tokens in the English to-
keniser’s vocabulary causes this issue. An adaptation method is proposed to mitigate
the lack of language-specific tokens in a tokeniser used in model pre-training.

A pre-trained Language Model uses an original base tokeniser Tb trained mostly
using a monolingual dataset Db in a base language Lb. To adapt Tb to a target
language Lt, it is necessary to use a sample of a monolingual, task-agnostic dataset
in a target language, Dt, which is large enough to represent a great majority of Lt’s
vocabulary, phrases and its overall linguistic structure. The next step is to create a
new, target language tokeniser Tt. To ensure the similarity of the nature of learnt
vocabulary between the base and target language tokenisers, the new tokeniser uses
the same algorithm as the base tokeniser (e.g. Byte-Pair Encoding, Unigram Model).
While training a BPE tokeniser is a computationally expensive and time-consuming
process, it must be performed only once to obtain a list of vocabulary specific to the
target language.

Importantly, the target language tokeniser is not directly used in the Model
Adaptation stage (Section 3.2) because it would inherently involve relearning all
token embedding parameters of the pre-trained models. Given that the embedding
matrix contains many learnable parameters of a Language Model, learning them
from scratch requires correspondingly much training data, which is limited for low-
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resource languages.

Instead, a fixed number of k tokens from the target language vocabulary Vt is
incorporated into the base tokeniser. This work studies two approaches of base
tokeniser modifications:

1. Increasing the vocabulary size Vb and extending it with new to-
kens from the target language tokeniser, a concept common across liter-
ature (Artetxe et al., 2020; Pfeiffer et al., 2021). While it preserves all existing
tokens in Vb, it also involves increasing the capacity of the model’s embedding
matrix by increasing its dimension.

2. Replacing chosen tokens from the base tokeniser with the new tokens
from the target language tokeniser introduced by Csaki et al. (2023) and
further refined in this work. Although it removes some tokens from the original
vocabulary, it keeps the size of Vb constant and does not introduce additional
computation during training and inference.

One of the advantages of using a BPE tokeniser is its algorithmic detail, which
makes the tokeniser learn tokens in the order reflecting their frequencies in the to-
kenisation dataset. Hence, given the goal of minimising the ratio of tokens per word
(fertility), adding or replacing the most frequent k tokens unique to the target lan-
guage tokeniser Tt is reasonable.

Furthermore, it is essential to note that neither approach modifies the dimension
of the embedding space itself, keeping it identical to that in the pre-trained model.
Otherwise, additional adapters or modifying further layers of the model (e.g. posi-
tional encodings) would be required. Intuitively, this would involve longer training
in the Model Adaptation stage and, therefore, is out of scope for this project.

3.1.1 Token Replacement

The replacement process follows the idea proposed by Csaki et al. (2023). It can be
split into initially removing a token from the vocabulary of the base tokeniser and
subsequently associating a new token from the target language tokeniser’s vocabu-
lary with the removed token’s ID. However, some tokens cannot be easily removed
in BPE tokenisers due to their presence in a list of merge rules. Removing a token,
which is a building block of another token, would involve further undesired modifi-
cations to the vocabulary. Luckily, the least frequent tokens will usually be final, not
constituting any merge rules. On the other hand, adding new tokens to Vb involves
adding their merge rules from the target language tokeniser.
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The most frequent non-overlapping k tokens from the target language tokeniser
Tt are used to choose the set of new tokens. The opposite strategy can be applied
to selecting tokens to remove in the base tokeniser Tb. Intuitively, selecting the
least frequent non-overlapping k tokens influences the tokenisations of texts in the
base language Lb the least. However, in addition to being non-overlapping and least
frequent, tokens selected for removal must also be final. This is crucial to avoid
the abovementioned issue of removing tokens in the vocabulary but leaving them in
some of the merge rules of the base tokeniser.

On the other hand, adding the most frequent non-overlapping tokens from the
target language tokeniser to the base tokeniser has a great advantage: their merge
rules can be reused and integrated into the new tokeniser. Replacing merge rules
is possible due to the design of the replacement scheme and the properties of BPE.
Firstly, the tokenisers share the same initial vocabulary, which guarantees that a
merge rule of any token added to the vocabulary during training will consist of ei-
ther tokens from the initial vocabulary or recursively tokens which were built this
way. Furthermore, using the most frequent tokens from Tt guarantees that their
merge rules can only use either initial tokens, other tokens present in the k most
frequent tokens from Vt, or tokens already present in Vb with a lower id (because of
the non-overlapping requirement).

The token replacement algorithm is presented below:

1. Assuming the following:

• A base tokeniser Tb with a vocabulary list Vb and a merge rules list Rb.

• A target language tokeniser Tt with a vocabulary list Vt and a merge rules
list Rt.

• A number of tokens to replace kreplace.

2. Create a list Vnew containing the IDs of kreplace first tokens from Vt which are
not in Vb.

3. Create a list Vb−non−overlapping containing the IDs of tokens from Vb which are
not in Vt.

4. Create a set Vb−final containing the IDs of final tokens from Vb.

5. Create a list Vold of the IDs from Vb−non−overlapping, which are also in Vb−final.
Remove all elements but the last kreplace ids from Vold.

6. For an index i ranging from 1 to kreplace:

21



(a) Find the (kreplace − i)th token from Vold in Vb and replace it with the ith
token from Vnew.

(b) In Rb, find the merge rule rb generating the (kreplace − i)th token from
Vold.

(c) In Rt, find the merge rule rt generating the ith token from Vnew.

(d) Replace rb with rt in Rb.

3.1.2 Token Addition

Similarly to the token replacement approach, token addition considers the most fre-
quent k non-overlapping tokens from the vocabulary of a target language tokeniser.
The vocabulary Vb is extended by k selected tokens and added in the order reflect-
ing their frequencies.1 Tokenisers based on the Byte-Pair Encoding algorithm treat
manually added tokens differently from those created during tokeniser training be-
cause the former lack corresponding merge rules. When encoding input text, a BPE
tokeniser first searches for occurrences of added tokens in text and, if found, substi-
tutes them with added token placeholders. Once this process is done, the tokeniser
encodes the input text using ordered merge rules, gradually building the final to-
kenisation and omitting the already tokenised added token placeholders. Therefore,
no merge rules are added.

Increasing the vocabulary size involves resizing the model’s embedding matrix.
Such addition of learnable parameters influences the duration of training and sub-
sequent inference and may result in slower model learning. Although optimising the
model efficiency is outside this project’s scope, it is still worth adjusting its architec-
ture, considering the details of the hardware used for model training and inference.
In the commonly used AI hardware architectures, the matrix multiplication perfor-
mance (multiply-add operations) depends on matrix dimensions. Hence, the size of
an embedding matrix is increased by a number of added tokens rounded up to a
suitable multiple of a power of 2.2

3.2 Model Adaptation

Model adaptation consists of two main elements: modifying the embedding matrix to
reflect the changes introduced during tokeniser adaptation and a subsequent model

1Depending on the implementation details of a Byte-Pair Encoding tokeniser, the ordering of
added tokens may influence the encoding time.

2Link to GPU architecture documentation.
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training on target language data.

3.2.1 Embedding Matrix Initialisation

Extending the already pre-trained embedding matrix with incorrectly initialised
additional entries may influence the stability of fine-tuning. Therefore, they need to
be initialised adequately. On the other hand, the token replacement approach does
not extend the embedding matrix. However, an unmodified embedding of a replaced
token carries the semantic meaning of its predecessor. While the model is trained
in the further stages to re-learn the correct meaning of new tokens, re-initialising
the replaced embeddings will eliminate their initial bias (Kocmi and Bojar, 2017).
Multiple initialisation approaches have been considered:

• Zero Initialisation – sets an embedding to a zero vector 0.

• Gaussian Initialisation – uses samples drawn from a normal distribution
w ∼ N (µ = 0, σ2) to initialise embedding parameters. σ2 is usually chosen to
be small (∼1e-2).

• Xavier Initialisation – initialises parameters according to a uniform distri-
bution parametrised with the number of learnable parameters in the target
layer and the preceding layer.

• Averaged Token Embeddings – uses an average of the remaining, pre-
trained embeddings to initialise a new embedding. Two variants of embedding
averaging are considered:

– Averaging all of the remaining embeddings {e1, e2, ..., en} ∈ E:

enew = 1
n

n∑
i=1

ei,

which has been original proposed by Eric Mitchell3 and results in a the-
oretic bound on the Kullback-Leibler Divergence between an unmodified
pre-trained model and the one after embedding matrix modifications.

– Averaging embeddings of tokens into which the new token tnew would be
split under the base tokenisation. If

Tb(tnew) = {t1, t2, ...tm},

3Link to the mentioned thread.
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with corresponding embeddings {e1, e2, ...em}, then

enew =
m∑

i=1
ei.

This method has been suggested by Csaki et al. (2024), who showed that
it leads to a faster model convergence during training.

A method that introduces slight noise in the overall model parameter initiali-
sation outperforms zero initialisation. Moreover, Hewitt (2021) showed that zero
initialisation might lead to significant optimisation instabilities and, subsequently, a
large Kullback-Leibler Divergence between an unmodified pre-trained model and the
one after embedding matrix modifications. However, the author also suggested that
introducing slight noise in the embedding initialisation results in a similar problem
to zero initialisation. While one approach to tackle this issue is to use an average
of all existing embeddings, this work applies its refinement proposed by Csaki et al.
(2024) based on averaging only selected tokens. Using an arithmetic average of token
embeddings produced by the original tokeniser results in averaging over embeddings
of subword units, which intuitively may bear some semantic properties related to
the new token.

3.2.2 Model Training Methodology

A pre-trained model with modified embeddings is trained in a pipeline consisting of
two stages, each with a different goal. Initially, the model is trained on a larger cor-
pus of long, task-agnostic samples in a target language with a causal language mod-
elling objective. This continuous pre-training approach aims to adapt the model’s
parameters to the new language and can be viewed as a language-tuning stage.
Namely, it aims to adjust the existing word embeddings and learn the replaced or
added ones. Nevertheless, pre-training usually involves a significant amount of data
(e.g. pre-training dataset of OPT – 180B tokens, Llama 2 – 2T tokens). However,
the available resources for many African languages are limited (less than 1B tokens)
and differ in quality. Hence, this work uses a maximum of 100M tokens in a target
language for this stage. Furthermore, it follows the results from the study by Yong
et al. (2023), who showed a significant performance increase between models trained
on an adaptation dataset of 107 and 108 tokens. Furthermore, a model is trained
only on a single epoch, lowering the computational requirements for such adaptation.
All data samples are tokenised with a tokeniser adapted to the target language and
data-packed, meaning each sample spans the entire context window of the model.

Recent studies showed that fine-tuning a model on multitask prompts in a tar-
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Task-agnostic sample Prompt-response sample
Text: The Black Stars have been Prompt: What are the biggest
eliminated from the 2019 AFCON in challenges facing space exploration
the round of 16 after being defeated today?
on penalties – The match which ended Response: Space exploration
1-1 after extra time saw a first half goal faces several significant challenges,
from team captain, Dede Ayew, being both technological and financial. Some
disallowed by the referee Victor Gomes of the biggest hurdles include:
– Ghanaians who were incensed by the Developing new propulsion
decision took to social media to insult... technologies: Current rockets...

Table 3.1: Examples of a task-agnostic and prompt-response text. The task-agnostic
samples comes from the WURA dataset, while the prompt-response come from the
Aya dataset.

get language further improves the adaptation efficiency (Yong et al., 2023; Csaki
et al., 2023). Hence, the second stage combines samples from a smaller, prompt-
response dataset. This instruction-tuning stage leverages the same CLM objective
and is used to enhance the instruction-following capabilities of the model. Similarly,
if they even exist, prompt-response datasets for many African languages are sig-
nificantly smaller than for English. Nevertheless, given the high quality of usually
human-crafted instruction-tuning datasets, this stage works as an additional step in
language-tuning. However, the tokenised concatenations of prompt-response pairs
are not data-packed.

3.2.3 Avoiding Catastrophic Forgetting

Catastrophic forgetting is a phenomenon observed in artificial neural networks,
where learning new information causes the sudden and drastic erasure of previously
acquired knowledge. Using target language data to fine-tune an English pre-trained
language model is an instance of such a procedure. It may result in a significant
loss of English modelling abilities. One proposed solution to this problem is adding
instances used in pre-training to the fine-tuning dataset. Extending the fine-tuning
dataset with samples that were used to learn the pre-trained distribution of the
model helps to prevent catastrophic forgetting (Kirkpatrick et al., 2017). Given
that the language adaptation aims to adapt a pre-trained model to a new language
while leveraging the knowledge learnt during pre-training, preserving the original
model capabilities could also translate into better downstream task performance in
a target language. In addition to tokeniser modification strategies, this work explores
how the amount of English data in the dataset used for continuous pre-training in-
fluences the model performance. Table 3.2 presents three different proportions used.
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Furthermore, in the instruction-tuning stage, a proportion of 75% Target language
and 25% English is used.

Variant Target language English
Variant 1 100% 0%
Variant 2 75% 25%
Variant 3 50% 50%

Table 3.2: Three variants of the continuous pre-training dataset.

3.2.4 Learnable Model Parameters

Another approach to deal with catastrophic forgetting is fine-tuning only a selec-
tion of model parameters. Moreover, fine-tuning all model parameters intuitively
requires more extended training and more data, which is limited in the setup of
this project. Some works have shown that it is possible to freeze some parameters
and update only the remaining ones. On the other hand, approaches such as LoRA
offer a comparable fine-tuning accuracy achieved through tuning a small set of ad-
ditional parameters. Such parameter-efficient training results in faster convergence
and is better at preserving existing knowledge (Hu et al., 2022). Hence, this work
combines freezing, traditional fine-tuning, and LoRA-based methods. Targetting
attention queries and values with LoRA is particularly useful because these parame-
ters directly capture dependencies between tokens and their further representations.
Furthermore, a method similar to that proposed by (Lin et al., 2024) is applied,
where in addition to the parameters targetted by LoRA, the embedding matrix
is fine-tuned without any decomposition. Moreover, positional encodings and the
language modelling head (if not the same as the embedding matrix) are tuned to
reflect the different from English morphology of the target language. While fine-
tuning these vast sets of parameters (word embeddings can constitute even 50% of
all model parameters) diminishes the advantages of LoRA, it constitutes a necessary
language adaptation of word embeddings. All the remaining parameters are frozen,
and both continuous pre-training and instruction-tuning stages tune the same set of
parameters.
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Chapter 4

Experiments

4.1 Experimental Setup

4.1.1 Model and Tokeniser

Since a tokeniser is tied to a model, both cannot be selected separately. However,
only models using a Byte-Pair Encoding tokeniser are considered, given that the
token addition and replacement methods are proposed for this algorithm. In the
model adaptation experiments, an instance of a pre-trained model is adapted to
one of the four target languages. Hence, instances of OPT (Zhang et al., 2022) are
used because of the almost exclusively English pre-training dataset. Considering the
available computational resources and the planned experiments, the OPT-1.3B ver-
sion with roughly 1.3 billion parameters is selected. The model follows the modified
GPT architecture and uses a BPE tokenisation scheme. Furthermore, the average
size of its vocabulary (∼50k) places it in between the popular open source mod-
els such as Llama 2, Mistral 7B (Jiang et al., 2023) with ∼32k tokens, Llama 31

with ∼128k tokens, and Bloom, Gemma (Team et al., 2024) with ∼256k tokens.
Moreover, OPT-1.3B also supports flash-attention (Dao et al., 2022), an efficient
implementation of the attention mechanism, leveraging kernel fusion and the fast
SRAM GPU memory. Detailed architectural parameters of the mode has been pre-
sented in Table 4.1.

Implementations of the tokeniser and the model come from the HuggingFace
Transformers2 Python library, which provides model source code as well as pre-
trained weights. Furthermore, the library provides an efficient tokeniser implemen-
tation in Rust and uses the PyTorch framework3 for model definition and training.

1https://ai.meta.com/blog/meta-llama-3/
2https://github.com/huggingface/transformers
3https://github.com/pytorch/pytorch
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Parameter Value
Parameter Count 1,315,758,080
Attention Heads 32
Hidden Layers 24
Vocabulary Size 50,265
Embedding Dimension 2,048
Feedforward Hidden Dimension 8,192
Context Length 2,048
Tokenisation algorithm Byte-Pair Encoding
Pre-training Tokens 180B
Pre-training Dataset Language English

Table 4.1: Overview of the OPT-1.3B model.

4.1.2 Tokenisation and Training Data

Tokenisation data

Full language-specific subsets of the WURA dataset are used to train target lan-
guage tokenisers, leveraging its advantageous focus on African languages. Further-
more, WURA contains diversified content from online news websites and, therefore,
relatively high-quality texts. Each sample in the dataset is an instance of an article
split into a headline and its content. Furthermore, WURA is split into training
(90%) and validation (10%) subsets, which allows for training language tokenisers
on the former and their evaluation on the latter. The number of documents and the
average document length of the selected language subsets of WURA are presented
in Table 4.2.

Language No. Documents Mean and (std. dev.) doc. Length
Amharic 135,863 3,329.9 (4,953.0)
Hausa 359,881 2,343.1 (4,118.1)
Igbo 51,386 3,137.5 (5,000.5)

Yoruba 73,473 2,080.3 (5,054.8)

Table 4.2: Overview of the language subsets from WURA. Values are given for
the test split of the dataset. Average document length is given in characters and
calculated using entries from the content column.

The surprisingly high standard deviation in the document length indicates that
the documents are of significantly varying lengths, which needs to be considered
when sampling from the dataset. However, further analysis reveals that the high
variance is caused by outliers since more than 95% of all documents in all considered
languages are shorter than 10,000 characters. The tokeniser training and evaluations

28



are performed using a dual-socket system of 2x AMD EPYC 75F3 with 32 cores each
and 512GB of RAM.

Continuous Pre-Training Data

A language-specific dataset for continuous pre-training should be large and built
from relatively long, consistent, high-quality samples. WURA dataset (Table 4.2)
provides all of the features as the most extensive available African-centric dataset.
Alternatives, such as Glot-500c, provide short-context samples, which are less suit-
able for this stage.

As mentioned in Section 3.2.3, target language samples must be mixed with the
original pre-training dataset. However, some of the subsets of the original OPT pre-
training corpora are no longer publicly available.4 Hence, a dataset with a similar
format and content distribution should be used. Dolma (Soldaini et al., 2024) is a
recently published corpus containing cleaned English documents from sources such
as CommonCrawl, Reddit, Project Gutenberg and Wikipedia. Its representative
sample – Dolma v1.6-sample, contains roughly 10B tokens, reflecting the distribu-
tion of the entire corpus. Hence, it is further used as a substitute for the missing
OPT pre-training dataset and mixed with the language-specific pre-training data.

No. Documents Mean and (std. dev.) doc. Length
13,095,416 2,613.1 (7,843.3)

Table 4.3: Overview of the Dolma v1.6-sample dataset. The dataset is not split into
training and validation subsets. Average document length is given in characters and
calculated using entries from the text column.

Instruction-Tuning Data

Instruction-tuning is performed using the Aya Dataset, which contains human-
crafted prompt-response pairs. Although the more extensive set of instructions,
Aya Collection, is available, the former is preferred due to its higher quality. Ini-
tial analysis showed that several dataset entries have missing values, while some
machine-translated samples from the Aya Collection are of low quality. However, as
presented in Table 4.4, there is a significant difference in the data availability be-
tween languages, which needs to be considered when assessing adaptation efficiency.
Nevertheless, the Aya Dataset contains a set of English samples, which can be mixed
with the language subsets.

4Specifically, its significant part, the Pile, is no longer being hosted online.
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Language No. Documents Mean and (std. dev.) doc. Length
English 3,944 623.8 (820.6)
Amharic 1,207 140.0 (380.8)
Hausa 3,512 375.8 (854.4)
Igbo 1,534 350.1 (534.3)

Yoruba 11,758 1,987.2 (4,768.5)

Table 4.4: Overview of the language subsets from Aya Dataset. Values are given for
the train split of the dataset. Average document length is given in characters and
calculated using combined entries from the inputs and targets columns.

4.1.3 Model Training Technology

Model training is similar for both the continuous pre-training and instruction-tuning.
Training is performed in a distributed environment with the HuggingFace Acceler-
ate5 API, using an HPC cluster setup of four Nvidia GeForce RTX4090 GPUs,
each with 24GiB of memory. To decrease the memory requirement and shorten
the training time, all models are trained in a mixed precision with the bfloat16
format, providing better optimisation stability. Further performance optimisation
efforts include using the DeepSpeed framework6 and its zero-dependency optimiser
(ZeRO) Stage 3 for sharding model parameters, gradients and optimiser states in
data-parallel training. Moreover, both training stages use flash-attention 2, addi-
tionally decreasing the per-iteration training time.

4.1.4 Model Training Parameters

Both training stages use the original training objective – causal language modelling,
and the original AdamW optimiser and linear learning rate scheduler. Neither weight
decay nor dropout are used. Usually, these techniques are applied in the early stage
of the pre-training to prevent overfitting. A maximum mini-batch size of 2 per de-
vice is used for continuous pre-training. To simulate an even larger mini-batch size,
gradients are accumulated for 8 steps, leading to a global mini-batch size of 64. For
instruction-tuning, the same mini-batch size of 2 is used, with 4 gradient accumu-
lation steps, resulting in the global mini-batch size of 32. All models are trained
for 1 epoch and up to 100M tokens, resulting in different numbers of training steps
depending on the tokenisation used and the proportion of English data. The number
of continuous pre-training steps ranges from 383 to 1524, while instruction-tuning
ranges from 90 to 280 (except Yoruba – 933). Full details on the number of train-
ing steps are in the Appendix, Table A.2. Models are evaluated on the validation

5https://github.com/huggingface/accelerate
6https://github.com/microsoft/DeepSpeed
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sets every 250 steps during the continuous pre-training and every 100 steps during
instruction-tuning. LoRA targetted parameters (attention key and query parame-
ters) are decomposed into matrices with the rank of 8 and the scaling factor α = 32.
Furthermore, a dropout of 0.1 is applied to these parameters. All models are trained
with a seed of 42. Using LoRA for fine-tuning results in updating only about 11%
of all learnable model parameters. A full list of model training hyperparameters is
presented in Appendix A.1 in Table A.1.

The initial learning rate 1e-3 for both stages has been selected using the val-
idation loss obtained in the experimental runs. The search has been performed
over lr ∈ {1e-2, 5e-3, 1e-3, 5e-4, 1e-4, 5e-5, 1e-5}, continuous pre-training English
proportions of 0% and 50%, as well as two languages – Yoruba and Hausa. A hyper-
parameter search has been performed for continuous pre-training and instruction-
tuning using WURA, Dolma and Aya Dataset. In both cases, an optimal value 1e-3
avoided model divergence, resulting in stable optimisation. Detailed information
about hyperparameter tuning is presented in Appendix A.2, Figures A.1, A.2.
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Figure 4.1: Validation loss is calculated every 300 iterations of continuous pre-
training and every 100 iterations of instruction-tuning stages.

4.2 Experiment Design

4.2.1 Tokeniser Adaptation

The effect of token replacement and adaptation on the tokeniser’s fertility is studied
initially. For each target language, a dedicated tokeniser with a vocabulary size of
the original OPT BPE tokeniser (50,265) is trained. Subsequently, for each value
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of k, tokens from the target language tokeniser (Table 4.5) are added to the origi-
nal OPT BPE tokeniser. Similarly, the same procedure is repeated for replacing k

target language tokens with k tokens from the base tokeniser. Furthermore, in the
case of token replacement, all final non-overlapping tokens from the base tokeniser
are substituted, resulting in a different number of replaced tokens across languages.
This results in 15 adapted tokenisers per the four considered African languages. To
evaluate the in-language increase in fertility and the potential decrease in fertility in
English texts, each instance of the modified tokeniser is used to tokenise the target
language and English validation subsets of WURA. Furthermore, they are compared
to the baseline OPT BPE tokeniser and tokenisers from popular models: Llama 2,
Gemma and Bloom.

Tokeniser Modification Values of k
Replacement 100, 500, 1000, 2000, 5000, 10000, 15000, All
Addition 100, 500, 1000, 2000, 5000, 10000, 15000

Table 4.5: Considered numbers of replaced and added tokens. Note that All refers
to the all possible replacements dictated by the number of final non-overlapping
tokens in the base tokeniser and depends on the target language.

4.2.2 Tokeniser Modifications and Model Performance

Using the tokeniser adaptation study results, a selection of language-specific tokenis-
ers is used to tokenise model training datasets. In addition to the original OPT BPE
tokeniser, four modified tokenisers are chosen per language. Several model training
sessions are performed to measure the influence of adapted tokenisers and corre-
sponding word embedding entries on the model’s performance. Initially, each of the
5 tokenisers used per language is used to create a tokenised instance of the con-
tinuous pre-training dataset. Each dataset is sampled from the language-specific
subsets of the WURA train set and is limited to a fixed size of 100M tokens. Im-
portantly, due to the varying vocabulary size across tokenisers applied to the same
dataset, a potentially different number of dataset samples was used in each case.
The instruction-tuning dataset follows the same tokenisation approach. Further-
more, to study the effect of the amount of English pre-training data in the continu-
ous pre-training dataset, three variants of the target language - English proportions
are considered and presented in Table 3.2. The instruction-tuning stage uses a fixed
proportion of 75% target language and 25% English data. Summarising, pre-training
dataset tokenisation results in 3 proportion variants, each with four languages and
four tokenisers. Additionally, each language in variant 1 is tokenised with the base
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tokeniser. This results in 52 instances of model training in the first stage. Sim-
ilarly, the single variant of the instruction-tuning dataset is tokenised using four
base tokenisers and four language-specific tokenisers for each language. This results
in 20 dataset tokenisations, subsequently used to instruction-tune 52 continuously
pre-trained models. The complete list of model training configurations is presented
in Appendix A.1 Table A.2.

4.3 Evaluation Strategy

4.3.1 Tokenisation

There are three primary components of the tokeniser adaptation evaluation. Ini-
tially, a standard metric of the ratio of tokens per work (fertility rate) is used. Each
language-adapted tokeniser is used to tokenise both WURA validation subsets in
the target language and English. Given no access to the actual word count of the
dataset, the number of words is estimated using the rule-based punctuation tokeni-
sation algorithm from the Natural Language Toolkit7 Python library. Furthermore,
a fertility rate improvement per the number of modified tokens is reported to show
how the fertility rate changes with the number of modified tokens. Finally, the
evaluation compares the tokenisation time of the same datasets under different to-
kenisers to identify whether the tokeniser adaptation methods affect the performance
of tokenisation. The results of this evaluation were directly used to decide which
tokenisers should be used in the model adaptation stage.

4.3.2 Trained Language Models

The evaluation of adapted models is performed using downstream task benchmarks.
Following the study of Ojo et al. (2024), this work measures model capabilities using
an in-context learning approach with verbalised instruction prompts. Each model
is evaluated on the set of tasks, corresponding datasets and metrics presented in
Table 4.6. However, due to the relatively small size of the adapted LLMs, zero-
shot evaluation has been changed to few-shots for all tasks. Furthermore, an empty
response ratio is calculated for each of the tasks. Evaluations allow per-language
model comparisons using differently adapted tokenisers and a comparison against
the baseline fine-tuned on the same datasets. Moreover, models are evaluated after
each training stage to investigate the effect of the instruction-tuning. Finally, valida-
tion perplexity is reported as an intrinsic evaluation metric. However, as mentioned

7https://www.nltk.org
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by Yong et al. (2023), perplexity is not a great measure of LLM capabilities, partic-
ularly instruction-following skills. Example model evaluation prompts are presented
in Appendix A.4. The following is a brief overview of the evaluation benchmarks:

• AfriQA – A cross-lingual, open-retrieval question answering dataset for African
languages. The answers to asked questions are provided in the context para-
graph supplied to the model.

• MAFAND-MT – A machine translation dataset. Sentences in the African
languages selected for this study have their English translations.

• MasakhaNews – A news topic classification dataset. Dataset containing a
set of news articles in each language. Each of the articles should be assigned
one of the up to 8 general labels such as business or technology.

• AfriSenti – A sentiment classification task of tweets in a set of African lan-
guages. The task involves assigning one of the positive, negative and neutral
labels to each tweet.

• MasakhaNER – A dataset containing sentences in African languages and
the corresponding NER tags of selected entities.

Task Benchmark Name Metrics
English QA AfriQA SQuAD F1 Score
Cross-lingual QA AfriQA SQuAD F1 Score
MT Target Lang to English MAFAND-MT ChrFb

MT English to Target Lang MAFAND-MT ChrFb

News Topic Classification MasakhaNews F1 Score
Sentiment Classification AfriSenti F1 Score
Named Entity Recognition MasakhaNER F1 Score

Table 4.6: A summary of used benchmarks and corresponding metrics. Note that
AfriQA does not provide samples in Amharic, and hence, this language is not eval-
uated for QA. a: Character-Level F-score.
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Chapter 5

Results & Discussion

5.1 Tokeniser Fertility Analysis

5.1.1 Tokenisers of Large Language Models

To explore the landscape of the fertility rate of tokenisers from the commonly used
models, they have been applied to texts in English and the selected African Lan-
guages. The results are presented in Figure 5.1, which provides interesting intuition
about the training data of evaluated tokenisers. First of all, the English-dominated
training sets of the tokenisers result in their optimal fertility rate between 1.0 and
1.5 on English validation data. Notably, all language-dedicated tokenisers have a
fertility rate within the same range. Considering the other languages, a significant
increase in the tokens per word ratio for OPT and Llama is caused by the lack of
African language data in their training datasets. Interestingly, the increased vo-
cabulary size of the Gemma tokeniser partially improves its fertility rate, although
having almost exclusively an English training dataset. Nevertheless, Bloom’s to-
keniser uses the same number of tokens but was trained on a multilingual dataset
and consistently achieves a fertility rate of around 1.5 in all languages using Latin
script.

On the other hand, only the tokeniser trained specifically on Amharic texts
handles tokenisation of this language well. While all tokenisers perform poorly
(Figure 5.1a), the exceptionally high fertility rates achieved by OPT and Llama 2
effectively translate to character and byte-level tokenisations. Therefore, such tokens
are re-used to represent multiple words, which may be reflected in their generic
embeddings. On the other hand, the lower fertility rate and the increased average
length of tokens in tokenised texts allow their better representation in a latent space.
Hence, tokeniser adaptation may play a vital role in the LLM adaptation.
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Figure 5.1: Fertility rate of tokenisers of popular LLMs.

5.1.2 Token Addition and Replacement Analysis

While both tokeniser adaptation schemes were expected to lower the fertility rate of
the original OPT tokeniser on the target language data, they do so with very differ-
ent dynamics, as presented in Figure 5.2. First, the per-language experiments show
consistent fertility rate trends across all studied languages. Interestingly, the most
significant difference in the tokens per word ratio on target language data occurs
after adding or replacing the first k = 100 tokens, regardless of the target language.
On the other hand, the same tokenisers applied to the English subset of WURA do
not indicate meaningful differences in fertility rates. Hence, modifying a few tokens
results in significantly lower fertility on a target language data while maintaining
the same performance on data in the base language. This is a promising result for
further model adaptation, which leverages cross-lingual training data.

However, despite their similar performance with k = 100, token addition and
replacement exhibit significant differences as k increases. Adding target language
tokens to the base tokeniser leads to a faster fertility decrease on language-specific
data, in contrast to token replacement. This trend holds true for all languages, but
the gap between added and replaced tokens is particularly pronounced for Hausa
(Figure 5.2c). Moreover, both approaches have distinct effects on fertility in the base
language. Surprisingly, the English data fertility of tokenisers with replaced tokens
remains almost unchanged, while the fertility of those with added tokens increases
with growing k. The algorithmic details of Byte-Pair Encoding (Section 2.1.2) and
the tokeniser adaptation methodology (Section 3.1.2) provide further insights into
these unexpected behaviours. To tokenise a sequence of characters (bytes), a BPE
tokeniser uses replaced tokens in a standard way, building them through the corre-
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sponding merge rules. However, because they replace the least frequent tokens, the
tokeniser may already have different intermediate tokenisations of the same char-
acter (byte) sequence. Hence, depending on the context within the sequence of
characters (bytes), the frequency-based tokeniser may consider the replaced tokens
inferior to alternative tokenisations. On the other hand, added tokens are searched
and replaced directly in the text before applying tokeniser merge rules, hence leading
to a significant decrease in tokeniser fertility on target language texts. The author
suspects the same mechanism to be responsible for the increasing fertility in English
data. Detailed fertility rate results are available in Appendix B.1, Table B.1.
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Figure 5.2: Fertility rates for base tokenisers modified by adding or replacing k
tokens from target language tokenisers.

Furthermore, replacing and adding the same number of tokens results in different
tokenisation times of language-specific subsets of WURA (Figure 5.3). Importantly,
both tokeniser modification schemes result in shorter tokenisation. Intuitively, the
performance improvements result from the lower tokeniser fertility and, equivalently,
larger average length of tokens. Splitting the same dataset into fewer tokens requires
fewer tokeniser merges and, therefore, less time. Furthermore, tokenisers with ex-
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tended vocabularies are faster because they start by replacing substrings with token
placeholders, hence decreasing the number of required merges.
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Figure 5.3: Tokenisation time for base tokenisers modified by adding or replacing k
tokens from target language tokenisers. All pre-tokenisation datasets contain ∼5M
words.

The obtained experimental results display the existence of a trade-off between
target language fertility, base language fertility and tokeniser performance. Further-
more, modifications of tokens need to be reflected during model training through
re-learning the corresponding word embeddings. While a preferred tokeniser usually
has lower fertility, significantly extending the model’s vocabulary or re-learning ex-
isting word embeddings may require large amounts of data. To further explore the
advantages of tokeniser adaptation, Figure 5.4 presents the improvements in fertility
rates per language, normalised by the number of modified tokens. The normalised
increase in fertility rate decreases exponentially, and for most of the considered
languages, modifying the first 100 tokens has around four times more influence on
decreasing fertility than modifying the next 400 tokens.

While decreasing the tokenisation time is not the primary goal of this project, se-
lecting tokenisers for further model adaptation experiments needs to be based on the
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Figure 5.4: Fertility rate improvement with respect to the base tokeniser normalised
by the number of modified (added or replaced) tokens.

fertility of both target and base languages and the number of changes that need to
be introduced to the embedding matrix. To study the influence of replacing a small
number of tokens, all tokenisers with 100 replaced and 100 added tokens are selected.
Furthermore, the decrease in fertility beyond 2000 replaced tokens is marginal and,
in some cases, behaves non-monotonically (Figures 5.2a and 5.2b). However, to-
keniser replacement does not seem to work for Hausa very well, and replacing more
tokens is required to match the fertility rate improvement achieved by tokenisers
in other languages. Nevertheless, all tokenisers with 2000 replaced and 2000 added
tokens are studied for consistency. Figure 5.5 shows the per-language fertility rate
comparison between the base tokeniser (OPT), target language tokeniser, and se-
lected adapted tokenisers. Notably, replacing 2000 tokens is equivalent to extending
the vocabulary by only 100. Finally, tokenisers with an added 2000 tokens achieve
fertility comparable to the language-dedicated tokenisers. Detailed fertility rates are
presented in Table 5.1.
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Figure 5.5: Fertility rate of the base tokeniser and target language tokenisers, com-
pared to the adapted tokenisers (replace-100, add-100, replace-2000, add-2000) se-
lected for the further model adaptation.

Lang. OPT R-100 R-2000 A-100 A-2000 Lang-Dedicated
amh 10.61 5.73 4.09 4.82 2.49 1.62
hau 2.00 1.91 1.82 1.78 1.36 1.13
ibo 2.90 2.18 1.89 1.94 1.55 1.38
yor 2.95 2.13 1.87 1.96 1.46 1.22

Table 5.1: Detailed fertility rates of the tokenisers selected for the model adaptation
stage. Note the preferred fertility range of 1-1.5. R refers to replaced tokens, while
A indicates added tokens.
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5.2 Model Adaptation Analysis

The initial experimental results indicated a near-zero performance of all models in
a zero-shot in-context learning setting. Hence, all experiments and all tasks use
a 3-shot ICL evaluation methodology. Although there is no single model outper-
forming the OPT-1.3B baseline in all tasks, almost every task-language pair has
an adapted model, which beats the baseline, as shown in Figure 5.6. Furthermore,
Table 5.2 presents detailed information regarding model and tokeniser adaptation
details of the best performing models. Interestingly, languages differ in the improve-
ment achieved in each task, suggesting no clear answer to Research Question 2. For
example, a notable increase in sentiment classification of Amharic texts (13%) does
not translate to other languages, with only a small increase for Hausa (4%) and
marginal improvement for Igbo. Such an increase in Amharic may be caused by
adding the vocabulary expansion and added support for the Ge’ez script. On the
other hand, an improvement obtained in one task does not automatically translate
to another, similar task. While there are no significant improvements in Machine
Translation to English, model performance in the opposite task improves similarly
for all languages. Interestingly, these asymmetric improvements may indicate the
undesired effect of catastrophic forgetting, resulting in poorer capabilities of English
text generation. However, this is not the case in question answering, where there is
an observable improvement in both English and cross-lingual settings. This result
displays the possible impact of additional instruction-tuning with samples often for-
matted as question-answer pairs. The results for the MasakhaNER benchmark are
not presented since neither of the models has proven to be capable of Named Entity
Recognition in the in-context learning format.

Model adaptations were closely monitored through inspecting the training and
validation losses. Although the convergence of all models, the smallest loss values
in the continuous pre-training were achieved by models adapted with the original
OPT tokeniser. While the training loss curves have similar shapes, the adaptation
of models with 2000 added tokens consistently resulted in significantly higher loss
values. This is as expected and shows that models with more significant changes
to the embedding matrix result in higher perplexity. Notably, models with replaced
2000 tokens achieved similar loss values to models were 100 tokens were added, in-
dicating that token replacement introduces less disorder to the model functioning.
On the other hand, instruction-tuning losses do not differ across different tokenisers.
Training loss curves are in Appendix A.3.
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Further analysis of model adaptation is split into three subsections, each study-
ing the problem from the perspective of a different variable. Nevertheless, a common
result obtained across all experiments is the inconsistent adaptation accuracy across
evaluated target languages and tasks. This is particularly visible when compar-
ing the evaluation results between tasks involving shorter and longer generations.
Furthermore, the results differ depending on the adaptations to languages with the
same script as the model’s base language (Latin – Hausa, Igbo, Yoruba) and those
with a different script (Ge’ez – Amharic).

Finally, while the adapted models generally achieve better results than the base-
line, the improvement is insignificant and does not compare to larger LLMs (Ojo
et al., 2024). One of the suspected reasons is the nature of the selected evaluation
tasks, which require cross-lingual model capabilities to reason and generate text in
both English and a target language. While sentiment and topic classification tasks
involve generating single-class labels in English, machine translation and question
answering require predicting longer texts, possibly in the target language. Further-
more, AfriQA is a cross-lingual benchmark that utilises capabilities such as answer
retrieval from a provided context paragraph. While LLMs can learn and display
such behaviours, the limited scale of this study and the selection of the 1.3B base
model may have contributed to the inconsistency in results. Furthermore, the use
of currently unavailable monolingual benchmarks in model evaluation or the adjust-
ment of existing cross-lingual methods, as well as increasing the number of examples
provided in prompts, could benefit the quality of this study.

Task Amharic Hausa Igbo Yoruba
English QA - A-100b

2 A-2000b
1 A-100b

1
Cross-lingual QA - A-2000b

3 A-2000b
2 R-2000b

1
MT Target Lang to English A-100a

3 Baseline Baseline R-2000a
3

MT English to Target Lang A-2000a
1 OPT-Tokb

1 A-2000a
3 R-2000a

3
News Topic Classification A-2000a

2 A-2000a
3 R-2000b

3 OPT-Tokb
1

Sentiment Classification A-100a
2 A-2000a

3 R-2000a
3 Baseline

Table 5.2: Best model performance in 3-shot evaluation for task-language pairs.
Superscripts: a – continuous pre-training only, b – continuous pre-training and
instruction-tuning. Subscripts refer to continuous pre-training dataset variants.

5.2.1 Tokeniser Adaptation Evaluation

While modifying the tokeniser generally improves the performance of model adap-
tation for almost all task-language pairs (Table 5.2), no clear result indicates which
methods should be used. While token addition is more successful for Amharic and
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Figure 5.6: 3-shot evaluation of the baseline OP-1.3B and adapted models. Note that
each Best Adapted refers to the best of all model for the particular task-language
pair – full details are presented in Table 5.2. Hence, the performance of a Best
Adapted on a particular task may be very different to other tasks.

Hausa, models adapted through token replacement perform better in Yoruba. The
results of the experiments also indicate that the optimal choice depends on language
and task. Nevertheless, task performance and the number of modified tokens are
more consistent across the studied pairs. The gathered results indicate that the
accuracy increases with more modified tokens, apart from machine translations to
English and English question answering. Both tasks require strong English under-
standing capabilities. Hence, it is possible that for such tasks, a smaller vocabulary
in a target language achieves better performance.

Plots in Figure 5.7 show various task performances of Amharic-adapted models.
Although tokeniser adaptation leads to consistently improving machine translation,
it decreases the model’s ability to classify the sentiment of texts from 50% to almost
0%, indicating the model is not producing sentiment labels any more. Interestingly,
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Figure 5.7: 3-shot evaluation of Amharic-adapted models, trained solely through
continuous pre-training with a data mix of 50% English and 50% target language.
The empty results for topic classification indicate it achieved F1 scores of 0 for all
adapted models but the last Add-2000.

only the model with the added 2000 tokens can classify the topic of Amharic news
articles, while the remaining methods always result in non-label generations. Such
behaviour could result from the different scripts used for the target language, where
Amharic has no direct support in the tokeniser. The surprising decrease in AfriSenti
contradicts this intuition, especially given that the last two tasks do not require
generations in the target language.

However, the decrease in AfriSenti and the lack of MasakhaNews classifications
do not occur for Hausa (Figure 5.2c). Instead, models with more modified tokens
(2000 added or replaced) achieve the best results for almost all tasks. Notably,
the significant increase in F1 Score of more than 15pp on the topic classification
task and more than 20pp on the sentiment classification shows a positive impact
of the tokeniser adaptation compared to the model using the original tokeniser.
Furthermore, models with adapted tokenisers achieve better results in the question-
answering benchmark and do not improve on machine translation. On the other
hand, tokeniser adaptation results in better translations for Igbo and Yoruba (Fig-
ures 5.2b and 5.2d), possibly due to different characteristics of the pre-training data,
such as shorter document length. However, the choice of the tokeniser adaptation
method in these languages has a significant influence on the news classification ca-
pabilities. For Igbo-adapted models, tokenisers with more modified tokens increase
the F1 score more significantly. At the same time, for Yoruba-adapted models, the
score almost doubles compared to the original tokeniser when 100 tokens are mod-
ified, increasing less when 2000 tokens are added or replaced. This indicates that
additional factors may influence the final model performance, such as the quality
and quantity of training data per language; hence, the answer to Research Question
1 requires further studies.
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Figure 5.8: 3-shot evaluation of Hausa-adapted models, trained solely through con-
tinuous pre-training with a data mix of 50% English and 50% target language.
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Figure 5.9: 3-shot evaluation of Igbo-adapted and Yoruba-adapted models, trained
solely through continuous pre-training with a data mix of 50% English and 50%
target language.
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5.2.2 Dataset Variants

Furthermore, adding base language texts to the continuous pre-training dataset has
been investigated. Similarly to the previous section, the model adaptation perfor-
mance depends on the chosen task and language. As shown in 5.10, three dataset
variants mentioned in Section 3.2.3 are considered. In the case of Hausa, the model’s
performance on most tasks benefits from introducing English texts to the dataset.
Interestingly, a significant improvement across all adapted tokenisers is achieved in
the sentiment classification task. Furthermore, this improvement grows with the
amount of English data in the dataset (from 0% through 25% up to 50%). Simi-
larly, the topic classification performance of models trained on a dataset containing
an equal amount of English and target language data is also higher than those
trained solely on target language data. This may indicate that bilingual training
not only helps mitigate the effects of catastrophic forgetting but also improves the
cross-lingual capabilities of the model. However, adding base language to the pre-
training dataset improves machine translation to the target language but does not
increase the reverse. Interestingly, English question answering does not differ signif-
icantly across variants, which, similarly to machine translation, is counter-intuitive,
given that the presence of English data should enhance inference in this language.
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Figure 5.10: 3-shot evaluation of Hausa-adapted models, trained solely through
continuous pre-training on different dataset variants.

Nevertheless, the same reasoning cannot be applied to Yoruba-adapted mod-
els (Figure 5.11). Adding English data to the continuous pre-training dataset no
longer benefits the previously increased sentiment classification performance. Fur-
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thermore, a comparative analysis of different target languages suggests that the
model performance is also generally unrelated to the tokeniser adaptation scheme.
Topic classification is an exception to this conclusion, maintaining its improvement
across all studied tokeniser adaptations.

The obtained experimental results are inconclusive in whether mixing target
language data with the base language of a model contributes to increased model
performance. A possible reason for the inconsistent results is the used English
samples, which, although from a similar distribution, are not sampled from the
actual pre-training dataset of OPT-1.3B. Nevertheless, benchmark evaluations do
not show any significant decrease, suggesting that training on bilingual datasets
does not worsen the model’s performance. Additionally, studying Table 5.2, which
shows the best models for each task-language pair, most best-performing models
used variants 2 or 3. Hence, further study is necessary to confirm the effect of
bilingual fine-tuning.

Additional plots displaying per-task performance for Amharic and Igbo have
been attached in the Appendix B.2 as Figures B.9 and B.11, respectively.
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Figure 5.11: 3-shot evaluation of Yoruba-adapted models, trained solely through
continuous pre-training on different dataset variants.
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5.2.3 Continuous Pre-Training and Instruction Tuning

Finally, models adapted through continuous pre-training (CPT) have been further
instruction-tuned (IT). Given the lack of apparent negative influence of using mixed
datasets on the final model performance, variant 3 (50% English, 50% target lan-
guage) has been selected for further instruction-tuning. Furthermore, 25% of the
prompt-response dataset itself constitutes English samples. Instruction-tuning ben-
efits and disadvantages around the same number of models from Table 5.2. Interest-
ingly, there is a set of tasks, for which it seems advantageous – all the best models
for question answering were instruction-tuned. This is intuitive, given the prompt-
response format of the Aya Dataset used in this stage, which fits the question-
answering task. On the other hand, neither of the preferred models for Amharic
uses instruction-tuning. This is likely due to the poor data quality and availability–
Amharic has the shortest average length and least samples in the Aya Dataset (Ta-
ble 4.4).
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Figure 5.12: 3-shot evaluation of Hausa-adapted models. CPT refers to continuous
pre-training on 50% English and 50% target language task-agnostic data. IT means
instruction-tuning on 25% English and 75% target language prompt-response for-
matted samples.

Studying the per-language influence of instruction-tuning, Hausa displays sig-
nificant and consistent improvements in question answering, where a combination
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of both training stages improves the quality of model generations. Interestingly,
applying additional instruction-tuning to models with different numbers of modified
tokens results in different results. While those with replaced or added 100 tokens
benefit from training on prompt-response formatted data, models with modified
2000 tokens achieve much better performance without it. Similarly, while all models
with adapted tokenisers are better in sentiment classification after continuous pre-
training only, those with more significant changes to the vocabulary get worse when
instruction-tuned.
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Figure 5.13: 3-shot evaluation of Igbo-adapted and Yoruba-adapted models. CPT
refers to continuous pre-training on 50% English and 50% target language task-
agnostic data. IT means instruction-tuning on 25% English and 75% target language
prompt-response formatted samples.

For both Igbo (Figure 5.13a) and Yoruba (Figure 5.13b), instruction-tuning con-
sistently worsens the performance of machine translation. Since it happens in both
translation directions, it may be caused by the structure of the machine translation
task. Moreover, while English question-answering capabilities change inconsistently,
the same task in the target language generally benefits from instruction-tuning. Fur-
thermore, topic and sentiment classification results do not present results consistent
across languages and even not within tasks, with instruction-tuning sometimes in-
creasing and sometimes decreasing the performance of models. Additionally, there
does not seem to be a strong relation between the number of training steps (number
of prompt-response samples) and performance improvement. Although instruction-
tuned with a dataset roughly eight times larger than those of Amharic and Igbo,
Yoruba-adapted models do not display better performance.
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In summary, while instruction-tuning improves cross-lingual question answering,
the improvements on other tasks are generally not consistent. Hence, this study
does not produce a definite answer to Research Question 3, indicating the need for
further research on the adequacy of language adaptation through instruction-tuning.
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Chapter 6

Future Work and Conclusions

This project investigated methods of adapting Large Language Models to low-
resource African languages. Although the availability of linguistic resources is partic-
ularly limited, following the correct adaptation methodology yielded improvements
in model performance. A thorough understanding of the tokenisation algorithm
and an overview of the recently published literature allowed modifications to the
tokeniser vocabulary through token addition and replacement. Furthermore, ap-
plying such tokeniser adjustments to a set of African languages – Amharic, Hausa,
Igbo and Yoruba, resulted in a comprehensive study of the tokeniser fertility rate.
After discovering that some commonly used tokenisers do not result in satisfactory
tokens per word ratio, they have been adapted by gradually replacing or adding
target language tokens. While for all of the studied languages, adding only a small
number of tokens significantly decreases the fertility rate, replacing the same num-
ber of tokens decreases the ratio less. Furthermore, the fertility rate of tokenisers
has been discovered to decrease exponentially with the number of modified tokens,
which suggests that replacing more tokens does not necessarily result in better per-
formance of adapted models. Moreover, the results gathered during the Byte-Pair
Encoding tokeniser adaptation study indicate that adding tokens to the tokeniser
vocabulary may decrease the tokenisation time and negatively influence its fertility
rate in the original language. The study of BPE tokeniser fertility could be extended
and further applied to commonly used open-source language models and other com-
mon tokenisation schemes such as SentencePiece, leading to potential improvements
in their performance as well as monolingual and multilingual adaptations.

Following the study of tokenisation schemes, several experiments have explored
model adaptation. Although the adapted models achieve better performance than
the baseline model in a selection of evaluated downstream tasks and languages, some
of the experiments are inconclusive. There is no clear evidence on which tokeniser
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adaptation methods achieve better downstream task performance. Although fol-
lowing token replacement does not introduce additional learnable parameters to a
model, further studies are necessary to verify whether it is beneficial. Likewise,
further research is needed to determine whether mixing target language data with
English texts improves model adaptation. While gathered evaluation results indicate
no decrease in model performance when training on additional English content, the
potential improvements depend on the language and the task. Finally, an additional
model adaptation step of instruction-tuning, while beneficial to question answering,
may result in decreased model capabilities in machine translation. Although the
inconsistencies, the author hypothesises that increasing the size of prompt-response
datasets or following more advanced tuning strategies may lead to better results.
Finally, many of the available evaluation benchmarks rely on additional cross-lingual
capabilities of tested models. Although initial modifications were made to the evalu-
ation strategy, the choice of such benchmarks could have been a mistake, contribut-
ing to the inconclusiveness of the studied research questions. While the scale of this
study did not allow adaptations of bigger language models, they could likely take
advantage of the emerging behaviours, leading to more consistent results. Hence,
there is a need for further studies of LLM adaptations for in-context learning tasks,
given their emergence as one of the key methods in low-resource natural language
processing.
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Appendix A
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A.1 Model Training Summary

Parameter Cont. Pre-Training Instruction-Tuning
Optimiser AdamW AdamW
Learning Rate 1e-3 1e-3
Learning Rate Scheduler Linear Linear
Weight Decay 0 0
Dropout 0 0
Seed 42 42
LoRA Dropout 0.1 0.1
LoRA Rank r 8 8
LoRA Scaling Factor α 32 32
Per Device Mini-Batch Size 2 2
Gradient Accumulation Steps 8 4
Global Mini-Batch Size 64 32
Training Epochs 1 1

Table A.1: Overview of the model training parameters.
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WURA Eng. Prop. Lang. Tokeniser No. Modified Tokens WURA Steps Aya Steps
0% amh base 0 762 72
0% hau base 0 762 210
0% ibo base 0 762 90
0% yor base 0 762 700
0% amh add 100 762 96
0% amh add 2000 762 96
0% amh replace 100 762 96
0% amh replace 2000 762 96
0% hau add 100 761 280
0% hau add 2000 761 280
0% hau replace 100 762 280
0% hau replace 2000 761 280
0% ibo add 100 513 120
0% ibo add 2000 405 120
0% ibo replace 100 580 120
0% ibo replace 2000 500 120
0% yor add 100 512 933
0% yor add 2000 383 933
0% yor replace 100 559 933
0% yor replace 2000 489 933
25% amh add 100 101 96
25% amh add 2000 101 96
25% amh replace 100 101 96
25% amh replace 2000 101 96
25% hau add 100 1015 280
25% hau add 2000 1015 280
25% hau replace 100 1016 280
25% hau replace 2000 1015 280
25% ibo add 100 684 120
25% ibo add 2000 539 120
25% ibo replace 100 773 120
25% ibo replace 2000 667 120
25% yor add 100 683 933
25% yor add 2000 511 933
25% yor replace 100 745 933
25% yor replace 2000 652 933
50% amh add 100 152 96
50% amh add 2000 152 96
50% amh replace 100 152 96
50% amh replace 2000 152 96
50% hau add 100 1522 280
50% hau add 2000 1522 280
50% hau replace 100 1524 280
50% hau replace 2000 1522 280
50% ibo add 100 1025 120
50% ibo add 2000 809 120
50% ibo replace 100 1159 120
50% ibo replace 2000 1000 120
50% yor add 100 1024 933
50% yor add 2000 766 933
50% yor replace 100 1117 933
50% yor replace 2000 978 933

Table A.2: Listing of model trainings, corresponding datasets and tokenisers used.
WURA represents the continuous pre-training stage, while Aya represents the
instruction-tuning stage. A constant proportion of 25% English data was used in
all instruction-tuning datasets.

66



A.2 Hyperparameter Tuning
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(a) 100% Hausa from WURA.
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(b) 75% Hausa and 25% English from Aya
Dataset.

Figure A.1: Summary of validation losses. Validation loss is calculated every 300
iterations of continuous pre-training and every 100 iterations of instruction-tuning
stages. Note the low number of instruction-tuning steps is caused by the low avail-
ability of instruction-tuning data for Hausa.
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(a) 100% Hausa from WURA.
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(b) 75% Hausa and 25% English from Aya
Dataset.
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(c) 75% Yoruba from WURA and 25% En-
glish from Dolma v1.6-sample.

0 100 200 300 400 500 600 700
Step

0

2

4

6

8

10

12

14

Tr
ai

ni
ng

Lo
ss

Training Loss for Various Learning Rate Configurations

Learning Rate (lr)
1e-5
5e-5
1e-4
5e-4
1e-3
5e-3
1e-2

(d) 75% Yoruba and 25% English from Aya
Dataset.

Figure A.2: Summary of training losses achieved in the hyperparameter tuning.
Training loss is calculated every iteration.
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A.3 Training Losses
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Figure A.3: Training losses of models adapted on Variant 1, CPT only. Training
curves are smoothed using Exponential Moving Average with α = 0.1.
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Figure A.4: Training losses of models adapted on Variant 2, CPT only. Training
curves are smoothed using Exponential Moving Average with α = 0.1.
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Figure A.5: Training losses of models adapted on Variant 3, CPT only. Training
curves are smoothed using Exponential Moving Average with α = 0.1.
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Figure A.6: Training losses of models adapted on Variant 1, CPT + IT. Training
curves are smoothed using Exponential Moving Average with α = 0.5.
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Figure A.7: Training losses of models adapted on Variant 2, CPT + IT. Training
curves are smoothed using Exponential Moving Average with α = 0.5.
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Figure A.8: Training losses of models adapted on Variant 3, CPT + IT. Training
curves are smoothed using Exponential Moving Average with α = 0.5.
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A.4 Model Evaluation Prompt Format

Machine Translation

Translate the Yoruba sentence below to English.

Sentence: {Yoruba Sentence 1}
Translation: {English Sentence 1}

Sentence: {Yoruba Sentence 2}
Translation: {English Sentence 2}

Sentence: {Yoruba Sentence 3}
Translation: {English Sentence 3}

Sentence: {Yoruba Sentence 4}
Translation:

Table A.3: 3-shot evaluation prompt format for the machine translation task.

News Topic Classification

Use only the following topic labels: entertainment, health, politics, religion or sports.

Text: {Text 1}
Label: {Label 1}

Text: {Text 2}
Label: {Label 2}

Text: {Text 3}
Label: {Label 3}

Text: {Text 4}
Label:

Table A.4: 3-shot evaluation prompt format for the news topic classification task.
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Question Answering

Context: {Context 1}
Question: {Question 1}
Answer: {Answer 1}

Context: {Context 2}
Question: {Question 2}
Answer: {Answer 2}

Context: {Context 3}
Question: {Question 3}
Answer: {Answer 3}

Context: {Context 4}
Question: {Question 4}
Answer:

Table A.5: 3-shot evaluation prompt format for the question answering task.

Sentiment Classification

Use only the following sentiment labels: positive, neutral, negative.

Text: {Text 1}
Sentiment: {Label 1}

Text: {Text 2}
Sentiment: {Label 2}

Text: {Text 3}
Sentiment: {Label 3}

Text: {Text 4}
Sentiment:

Table A.6: 3-shot evaluation prompt format for the sentiment classification task.
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Appendix B

Detailed Results

B.1 Tokeniser Evaluation

Tokeniser Amharic Hausa Igbo Yoruba
OPT BPE 10.61 2.01 2.91 2.94
Replaced-100 5.73 1.92 2.18 2.14
Replaced-500 5.02 1.88 1.92 1.97
Replaced-1000 4.73 1.84 2.06 1.92
Replaced-2000 4.08 1.83 1.89 1.87
Replaced-5000 4.45 1.8 2.01 1.85
Replaced-10000 4.3 1.79 2.02 1.82
Replaced-15000 3.41 1.79 1.83 1.82
Added-100 4.82 1.78 1.93 1.95
Added-500 3.25 1.56 1.7 1.68
Added-1000 2.84 1.46 1.61 1.56
Added-2000 2.48 1.36 1.54 1.46
Added-5000 2.1 1.27 1.47 1.36
Added-10000 1.88 1.23 1.45 1.31
Added-15000 1.77 1.21 1.44 1.29
Lang-dedicated 1.62 1.14 1.37 1.22

Table B.1: Detailed fertility rate results for all studied tokenisers.
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B.2 Model Evaluation

B.2.1 Validation Perplexities

Tokeniser Amharic Hausa Igbo Yoruba
Replace-100 8.58 9.72 10.74 11.69
Add-100 9.98 10.32 12.25 13.07
Replace-2000 11.16 10.09 12.76 13.72
Add-2000 19.99 13.42 14.87 18.31

Table B.2: WURA validation set perplexities of models continuously pre-trained on
50% English and 50% target language data.

Tokeniser Amharic Hausa Igbo Yoruba
Replace-100 1.11 1.18 1.24 1.79
Add-100 1.11 1.83 1.25 1.81
Replace-2000 1.11 1.18 1.24 1.77
Add-2000 1.11 1.18 1.24 1.79

Table B.3: Aya validation set perplexities of models continuously pre-trained on
50% English and 50% target language data and instruction-tuned on 25% English
and 75% target language.
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B.2.2 Complete Downstream Task Evaluation Results

3-shot Evaluation Results of Amharic-adapted Models (CPT only)
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Evaluation results for Amharic-adapted models, CPT (Variant 1)

(a) Variant 1, 100% Amharic and 0% English.
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Evaluation results for Amharic-adapted models, CPT (Variant 2)

(b) Variant 2, 75% Amharic and 25% English.
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Evaluation results for Amharic-adapted models, CPT (Variant 3)

(c) Variant 3, 50% Amharic and 50% English.

Figure B.1: 3-shot evaluation of Amharic-adapted models, trained solely through
continuous pre-training with different data variants. The empty results for topic
classification indicate it achieved F1 scores of 0 for all adapted models but the last
Add-2000.
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3-shot Evaluation Results of Hausa-adapted Models (CPT only)
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Evaluation results for Hausa-adapted models, CPT (Variant 1)

(a) Variant 1, 100% Hausa and 0% English.
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Evaluation results for Hausa-adapted models, CPT (Variant 2)

(b) Variant 2, 75% Hausa and 25% English.
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(c) Variant 3, 50% Hausa and 50% English.

Figure B.2: 3-shot evaluation of Hausa-adapted trained solely through continuous
pre-training with different data variants.
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3-shot Evaluation Results of Igbo-adapted Models (CPT only)
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Evaluation results for Igbo-adapted models, CPT (Variant 1)

(a) Variant 1, 100% Igbo and 0% English.
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Evaluation results for Igbo-adapted models, CPT (Variant 2)

(b) Variant 2, 75% Igbo and 25% English.
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(c) Variant 3, 50% Igbo and 50% English.

Figure B.3: 3-shot evaluation of Igbo-adapted trained solely through continuous
pre-training with different data variants.
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3-shot Evaluation Results of Yoruba-adapted Models (CPT only)
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Evaluation results for Yoruba-adapted models, CPT (Variant 1)

(a) Variant 1, 100% Yoruba and 0% English.
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Evaluation results for Yoruba-adapted models, CPT (Variant 2)

(b) Variant 2, 75% Yoruba and 25% English.
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Evaluation results for Yoruba-adapted models, CPT (Variant 3)

(c) Variant 3, 50% Yoruba and 50% English.

Figure B.4: 3-shot evaluation of Hausa-adapted trained solely through continuous
pre-training with different data variants.
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3-shot Evaluation Results of Amharic-adapted Models (CPT + IT)
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Evaluation results for Amharic-adapted models (Variant 1)

(a) Variant 1, 100% Amharic and 0% English in CPT, 75% Amharic and 25% English in
IT.
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Evaluation results for Amharic-adapted models (Variant 2)

(b) Variant 2, 75% Amharic and 25% English in CPT, 75% Amharic and 25% English in
IT.
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Evaluation results for Amharic-adapted models (Variant 3)

(c) Variant 3, 50% Amharic and 50% English in CPT, 75% Amharic and 25% English in
IT.

Figure B.5: 3-shot evaluation of Amharic-adapted models, trained solely through
continuous pre-training with different data variants. The empty results for topic
classification indicate it achieved F1 scores of 0 for all adapted models but the last
Add-2000.
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3-shot Evaluation Results of Hausa-adapted Models (CPT + IT)
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Evaluation results for Hausa-adapted models (Variant 1)

(a) 100% Hausa and 0% English in CPT,
75% Hausa and 25% English in IT.
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Evaluation results for Hausa-adapted models (Variant 2)

(b) 75% Hausa and 25% English in CPT,
75% Hausa and 25% English in IT.
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Evaluation results for Hausa-adapted models (Variant 3)

(c) 50% Hausa and 50% English in CPT,
75% Hausa and 25% English in IT.

Figure B.6: 3-shot evaluation of Hausa-adapted trained solely through continuous
pre-training with different data variants.
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3-shot Evaluation Results of Igbo-adapted Models (CPT + IT)
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Evaluation results for Igbo-adapted models (Variant 1)

(a) Variant 1, 100% Igbo and 0% English in
CPT, 75% Igbo and 25% English in IT.
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Evaluation results for Igbo-adapted models (Variant 2)

(b) Variant 2, 75% Igbo and 25% English in
CPT, 75% Igbo and 25% English in IT.
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Evaluation results for Igbo-adapted models (Variant 3)

(c) Variant 3, 50% Igbo and 50% English in
CPT, 75% Igbo and 25% English in IT.

Figure B.7: 3-shot evaluation of Igbo-adapted trained solely through continuous
pre-training with different data variants.
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3-shot Evaluation Results of Yoruba-adapted Models (CPT + IT)
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Evaluation results for Yoruba-adapted models (Variant 1)

(a) Variant 1, 100% Yoruba and 0% English
in CPT, 75% Yoruba and 25% English in IT.
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Evaluation results for Yoruba-adapted models (Variant 2)

(b) Variant 2, 75% Yoruba and 25% English
in CPT, 75% Yoruba and 25% English in IT.
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Evaluation results for Yoruba-adapted models (Variant 3)

(c) Variant 3, 50% Yoruba and 50% English
in CPT, 75% Yoruba and 25% English in IT.

Figure B.8: 3-shot evaluation of Hausa-adapted trained solely through continuous
pre-training with different data variants.
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Aggregated 3-shot Evaluation Results per Tokeniser (CPT only)
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Figure B.9: 3-shot evaluation of Amharic-adapted models, trained solely through
continuous pre-training on different dataset variants.
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Figure B.10: 3-shot evaluation of Hausa-adapted models, trained solely through
continuous pre-training on different dataset variants.
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Figure B.11: 3-shot evaluation of Igbo-adapted models, trained solely through con-
tinuous pre-training on different dataset variants.
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Figure B.12: 3-shot evaluation of Yoruba-adapted models, trained solely through
continuous pre-training on different dataset variants.
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Aggregated 3-shot Evaluation Results per Tokeniser (CPT + IT)
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Figure B.13: 3-shot evaluation of Amharic-adapted models, trained through both
continuous pre-training and instruction-tuning on different dataset variants.
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Figure B.14: 3-shot evaluation of Hausa-adapted models, trained through both con-
tinuous pre-training and instruction-tuning on different dataset variants.
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Figure B.15: 3-shot evaluation of Igbo-adapted models, trained through both con-
tinuous pre-training and instruction-tuning on different dataset variants.
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Figure B.16: 3-shot evaluation of Yoruba-adapted models, trained through both
continuous pre-training and instruction-tuning on different dataset variants.
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Appendix C

Additional Project Deliverables
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C.1 Project Plan

Project Overview

The recent developments of Large Language Models (LLMs) capable of In-Context
Learning revolutionised natural language processing. The further emergence of
LLMs designed for following user-specified instructions wrapped in user-friendly
web interfaces made cutting-edge technology available to the general public. The
AI-powered tools are used for entertainment and industrial applications, such as
software engineering, consulting and education. Nevertheless, depending on the
choice of prompting language, the performance of LLMs and, therefore, tools based
on them can differ significantly. Not optimised for use with languages poorly rep-
resented in training datasets, models perform particularly badly on low-resource
languages, effectively disallowing citizens of African, Asian and Eastern European
countries from accessing ChatGPT-like programs in their native languages.

The project aims to investigate the area of Large Language Models and methods
of increasing their performance on low-resource languages. In particular, it will look
into African languages and low-resource language adaption of models following the
decoder-only gpt-like architecture.

Aims & Objectives

Aim 1: To develop a technique for a low-compute multi-lingual adaptation
of a pre-trained decoder-only transformer language model.

Objectives:

1. Review the design of decoder-only transformer language model architectures,
popular Large Language Model implementations and datasets used for training
and evaluation.

2. Review fine-tuning and in-context learning techniques used in multilingual
Large Language Models.

3. Develop a data pre-processing tool for target African languages (e.g. Yoruba
and Amharic), making them a suitable input for further training.

4. Perform a language adaption of a language model through modifications of its
embedding layers.
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5. Compare the resulting model to its un-adapted version through evaluation on
common tasks and available benchmarks (e.g. Topic classification – MasakhaNEWS,
Named Entity Recognition – MasakhaNER, Question Answering – AfriQA).

Aim 2: To learn about the state-of-the-art techniques used for language
modelling of low-resource African languages.

1. Review the basics of linguistic (e.g. language classification) and tokenisation
methods for various scripts.

2. Review the available models, benchmarks and datasets in African languages.

Aim 3: To learn about the technological stack used for deep learning
model pre-training.

1. Review the implementation details of Large Language Model neural network
architectures in PyTorch and accompanying frameworks (e.g. DeepSpeed, Ac-
celerate, Megatron-LM ).

2. Develop a single-gpu training program for a gpt-like model.

3. Develop a multi-node, multi-gpu training program for a gpt-like model, sup-
porting model parallelism and necessary hardware and software configuration
of the distributed environment.

Expected Deliverables

• A literature review of state-of-the-art language models and methods used in
multilingual and low-resource settings.

• A design specification for the proposed algorithm and a description of con-
ducted experiments.

• Documented and functional software for data processing, deep learning model
training, and evaluation.

• Trained model parameters provided in a form of checkpoints.

• Results obtained through the evaluation of developed language models.

Work Plan

A work plan is presented in Figure C.1.
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Month
October November December January February March April

Exploration & planning

Literature review

Deep learning tech stack review

Hardware configuration

Data collection and processing

Model method development

Model training & evaluation 1

Interim Report preparation

Model training & evaluation 2

Framework development

Final evaluation

Final deliverables preparation

Figure C.1: The expected timeline of the project.
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C.2 Interim Report

Project’s goal

Given a pre-trained large language model, which was not trained on data in some
languages {l1, l2, . . . , ln} = L, improve the performance of the language model on
classic downstream tasks (e.g. news classification, machine translation, question
answering) in all languages in A simultaneously. Assuming a common academic
setting with no access to significant computational resources and a large amount of
high-quality data for languages in A, this project aims to investigate adaptations to
African languages, in particular.

Progress made to date

Extensive literature review – The landscape of neural Natural Language Processing
is dynamically evolving and it is crucial to understand its dynamics. The literature
review has been split into several categories, including the overview of the problem
of low-resource language modelling, specific neural architectures and their improve-
ments (e.g. various implementations of the Transformer), and available datasets
for training and evaluating models in low-resource African languages. Moreover, it
includes a review of existing language model adaptation techniques and mentions
concepts from the area of linguistics, helpful for navigating through the theory of
linguistics.

Collection of training and evaluation datasets – This project uses language data
in two different ways: 1) data used to fine-tune particular elements of pre-trained
models such as embeddings layers, and 2) datasets used for evaluation of the model’s
performance on common downstream tasks. The fine-tuning dataset for African lan-
guages has been constructed using WURA – a recently published work extending the
contents of the Common Crawl data. To compare the adaptation quality to other
languages, a dataset for German has been generated by sampling the multilingual,
cleaned version of the Common Crawl dataset. Moreover, a small Polish dataset has
been gathered from available sources such as Polish literature and Wikipedia pages.
On the other hand, a number of evaluation datasets have been processed. Currently
considered evaluation tasks are news classification, sentiment classification, named
entity recognition, question answering and machine translation.

Fine-tuning and the development of architectural changes to a model – The
English-based GPT2 model has been successfully modified by relearning its em-

93



bedding layers on a Polish dataset and combining them in a Mixture of Experts
component. The router for the MoE components has been further trained on a mix
of pre-training English and fine-tuning Polish data using a parameter-efficient ap-
proach. The model has not been evaluated using the In-Context Learning evaluation
setup, however, it displays multilingual capabilities.

Remaining work

Evaluation setup development – This step is of paramount importance to the project
since it will allow conducting experiments showing the effect of the proposed adap-
tation technique. Furthermore, it will allow experiments with adaptation hyper-
parameters and ablation studies. Preliminary experiments and existing work show
that considered model sizes (up to 7B parameters) do not work well in a zero-shot
in-context learning setting. Instead, a few-shot approach produces more reliable
evaluation results and, therefore will be pursued. The evaluation should cover a
number of downstream tasks for which the data has already been gathered and
compare the original and adapted versions of considered language models.

Generalisation of architectural changes to a family of decoder-only models – A
framework to perform a parameter efficient fine-tuning (PEFT), relearning the em-
bedding layers and combining them into a Mixture of Experts component will allow
for automatic application of the proposed method to several language model imple-
mentations. One of the most commonly used implementations of language models
is the Python transformers library. The proposed adaptation framework should be
locally incorporated into the transformers abstraction mechanism.

Experiments with varying parameters and ablation studies – Having both the
evaluation setup and the framework implementation, the experiments need to be
conducted. Most importantly, the adaptation quality should be evaluated, including
the potential loss in the quality of a model on languages used in the pre-training
dataset (e.g. English). Furthermore, given the research nature of this project, an
ablation study should be considered to explore the possibility of multi-language
adaptation without the additional step of Mixture of Expert Embeddings.
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