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Abstract
This works investigates how the compilation
toolkit in PyTorch can be applied to optimise
Large Language Model inference. We begin
with a brief description of the elements of
the compilation suite, and their application to
an multi-layer perceptron forward pass in an
LLM. Furthermore, we conduct experiments
assuming a scenario of inference on spot in-
stances. Finally, we discuss how subtle compi-
lation settings may contribute to additional gen-
eration latency. Our code is publicly available
at https://github.com/TheRootOf3/
torch-compile-benchmarks.

1. Introduction
Given the widespread use of Large Language Models and
the costs related to their development and usage, it is essen-
tial to provide tools that optimise their computations. Those
models usually process data in two distinct paradigms: train-
ing and inference. The optimisation goal for model training
is maximising throughput, leading to more samples seen by
the model in a given time unit, and hence quicker learning.
On the other hand, optimising inference is equivalent to
minimising the generation latency. Unlike model training,
inference cannot be easily parallelised given the sequential
nature of the decoding process from the transformer. In
this work, we focus on the stack of torch.compile(),
which allows optimisations applicable to arbitrary tensor
programs implemented in PyTorch (Ansel et al., 2024).

Our main contributions are as follows:

• We study the overhead of torch.compile() for
the specific case of LLM inference and its common
optimisations (e.g. key-value cache).

Word count: 2491, excluding abstract, tables and captions (using
texcount). 1Department of Computer Science and Technology,
University of Cambridge, Cambridge, UK. Correspondence to:
Andrzej Szablewski <as3623@cam.ac.uk>.

• We share experimental results showing what workloads
benefit from program compilation.

• We provide a brief explanation of different elements of
the torch.compile() stack.

2. Background – LLM Inference
One of the key elements in decreasing the latency of LLM
generations is key-value cache (KV cache) (Pope et al.,
2022). To decrease the latency of a decoding step of a se-
quence of n tokens, the autoregressive property of decoder-
based LLMs allows to re-use the previously computed key
and value projections of the past n− 1 tokens. Hence, this
requires only computing the query-key-value projections
of the nth token and its attention scores with the previous
tokens.

LLM inference is usually divided into a prefill and a decode
stage (Pope et al., 2022). The former involves processing
the user prompt, by progressively computing and caching
corresponding key-value pairs. The latency of a single step
of prefill depends on the user prompt length. While there ex-
ist approaches which re-use common prompt prefixes (e.g.
system messages in chatbots like in Hydragen (Juravsky
et al., 2024)), the stage is difficult to speed-up in an arbi-
trary way. Furthermore, the decoding stage decodes tokens
sequentially, one by one following the autoregressive nature
of LLMs, making it difficult to optimise. Importantly, both
workloads differ in the shape of data that is passed through
the model. While the prefill involves operations on the
inputs which can be batched and accelerated in hardware,
decode always processes a single input token. However, the
self-attention mechanism in decode computes over to the
entirety of cached keys and values, which can result in a
large number of computations (Vaswani et al., 2023).

Finally, one way to reduce the cost of LLM serving is
through using spot instances, usually available at much
lower price (Miao et al., 2023). Nevertheless, these compute
platforms are preemptible, which results in more frequent
initialisations of LLM servers including the compilation of
computation graphs. Frequent optimisations incur an over-
head, which in some scenarios may outweigh the benefits
of the compilation.
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Figure 1. Diagram showing the internal workings of TorchDynamo.
Note the dynamic inspection of the Python bytecode, extraction of
the FX graph, its further compilation and call from the transformed
bytecode. Diagram from the official PyTorch documentation.

3. The torch.compile() Stack
In a default, eager execution mode, PyTorch dynamically
executes corresponding operations and, if needed, creates a
backwards computation graph. While this provides devel-
opers and researchers with a significant amount of freedom
during designing and debugging their programs, it signifi-
cantly misses on potential speed-ups coming from algebraic
optimisation, operator fusion or reordering. Hence, a graph
mode has been introduced, allowing graph representation of
PyTorch programs and subsequent optimisations for target
hardware.

The stack of torch.compile() tools allows just-in-time
(JIT) compilation of arbitrary Python code into optimised
computation kernels. A significant size and scope of the
project is dictated by the number of challenges it needs to
address. Firstly, it can trace arbitrary Python code, which is
a large improvement when compared to TensorFlow (Abadi
et al., 2016) and the previous attempts of optimising Py-
Torch programs through TorchScript1. Those approaches
use domain specific languages (DSL) with static typing and
further limitations, making it difficult to translate programs
from the eager computation model. Furthermore, the compi-
lation suite also supports views and handles mutations, as op-
posed to JAX (Frostig et al.). Finally, torch.compile()
supports a vast range of hardware accelerators through mul-
tiple layers of intermediate representations and a decoupled
optimisation backend.

The JIT compilation occurs only after data is fed into a Py-
Torch program, allowing data-specific optimisations such as
those dependent on tensor shapes. Initially, a Python tracer
captures PyTorch operations during runtime. It utilizes the

1Link to TorchScript documentation.

CPython Frame Evaluation API2 to dynamically convert
Python bytecode into a PyTorch FX graph intermediate rep-
resentation, enabling further optimisation. Next, another
tool is used to trace both the forward and backward passes
of a model. This allows further lowering of the graph into
the native ATen IR, and architecture agnostic joint optimisa-
tions. Finally, the program is fed into a backend compiler,
which turns the incoming instructions into hardware-specific
IR and compiles it into optimised code. It supports multiple
backend targets, including GPUs and CPUs, by generating
optimised C++ and CUDA kernels with Triton.

3.1. TorchDynamo – Python Code Tracer

TorchDynamo is the key factor contributing to making
torch.compile() model- and application-agnostic. By
Just-In-Time evaluating the bytecode in a CPython frame,
it builds an FX graph of supported PyTorch operations,
and substitutes the original bytecode with calls to functions
representing version of the graph compiled by TorchInduc-
tor. The optimised code resulting from the extracted graph
is cached and re-used to speed up the execution process.
However, the optimisations often depend on tensor shapes
(e.g., leveraging alignment with GPU tile dimensions in ma-
trix multiplication operations). Furthermore, TorchDynamo
traces linearly. However, if the traced code has branches,
the execution path can change with the progression of the
program. To provide soundness, TorchDynamo uses the
concept of guards. This mechanism automatically binds the
compiled functions with a set of conditions. If they are not
met, the code will be re-traced and recompiled. Hence, it
is important to note that efficient PyTorch programs should
minimise the number of possible recompilations by elim-
inating redundant branching. On the other hand, if tensor
shapes are often changing dynamically, TorchDynamo will
capture the graph for the corresponding operations and pop-
ulate it with symbolic shapes. This however, may lead to
diminishing returns of compilation due to the need for more
abstract code.

Although TorchDynamo can trace arbitrary Python code,
some of the Python operations such as print are not sup-
posed to be added into FX graphs. TorchDynamo realises
completeness by implementing graph breaks whenever it
encounters unsupported operations. A graph break results
in finishing the tracing of the first graph, executing the
bytecode operations, and initiating capturing the remaining
instructions into another graph. Graph breaks are detrimen-
tal to optimisation gains because they do not allow joint
compilation of the captured graphs. While in some cases
it is impossible to eliminate graph breaks, they should be
avoided.

2Link to PEP 523.
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3.2. AoT Autograd – Forward-Backward Graph Tracer

The Ahead-of-Time (AoT) Autograd is another tracer, which
is responsible for lowering of FX graphs, generation of the
backwards graphs and initial graph transformations. To
decrease the compilation complexity, it converts FX graphs
representing all available PyTorch operations into a limited
set of ∼ 200 ATen operations, which constitute the native
PyTorch Intermediate Representation (IR).

3.3. TorchInductor – Compilation backend

The resulting ATen IR of a compiled function of module is
fed into TorchInductor, which is the compilation backend.
TorchInductor optimisations are mainly grouped into: 1)
operator fusion (vertical and horizontal), 2) out of order ex-
ecution, and 3) automatic work placement when numerous
hardware is used. PyTorch programs usually involve consec-
utive operations on propagated operands. In the eager mode
of execution, each operation involves sequentially loading
operands, performing the computation and storing the re-
sult. Vertical operator fusion allows to load the operands
once, and perform a number of computations, hence elim-
inating the need for continuous access a relatively slower
memory. On the other hand, horizontal fusion batches com-
putations for better hardware use (e.g. turning batch matrix
multiplications into grouped GEMM operations). In this
work, we focus on compilations to C++ OpenMP for CPU
architectures.

4. Methodology
To gain deeper understanding of the usefulness of
torch.compile() for LLM inference, we initially in-
vestigate the properties of resulting FX Graphs (TorchDy-
namo) and their compilations (TorchInductor) separately.
First, we profile the execution of eager and compiled in-
stances of an LLM to understand how different ATen op-
erations contribute to the computation time. Furthermore,
we study the case of compilation of the Llama3 multi-layer
perceptron (MLP). In the main part of experiments, we
investigate the latency of torch.compile() in a partic-
ular setting, when a model is initialised on a spot instance.
We study how the workload differences between prefill and
decode affect the compilation process and its efficiency.
The measured compilation properties include the number of
graph breaks, number of recompilations, compilation time
and execution time.

In the prefill+decode experiments we feed the model with
a constant number of prefill tokens and always generate
a constant number of tokens. To decrease the decoding
latency, we use a a KV Cache, which is initialised and
memory-allocated before the prefill stage. We ensure that
that the cache is always sufficiently large for all generated

Figure 2. Profiler output after running GPT-2 in eager mode.

Figure 3. Profiler output after running a compiled GPT-2. Note the
compilation took place during warmup runs executed beforehand.

tokens.

In all experiments, we study a 1B version of the Llama3.2
model (Grattafiori et al., 2024) implemented in the trans-
formers3 library. In addition, we use the GPT2 (Radford
et al.) model for profiling PyTorch operations (Figures 2
and 3). As sample model inputs we use a manually-crafted
list of prompts and longer, automatically-generated para-
graphs of text. To mitigate the inconsistency of results
caused by potential caching of program data, we follow
the official benchmarking suggestions from PyTorch doc-
umentation, including running PyTorch programs with the
TORCHINDUCTOR_FORCE_DISABLE_CACHES=1 flag.

5. Results
5.1. Eager vs Compiled Profiling

In the first experiment, we profile single-token computations
through eager and compiled instances of GPT-2. As shown
in Figure 2, more than 71% of time is spent in add-multiply
operations. The remaining time is spent across numerous
ATen dynamically executed operations such as gelu (12
calls), other matmul operations (bmm – 24 calls, mm – 1 call,
mul – 12 calls). On the other hand, the compiled version
(Figure 3) contains a number of dynamically optimised func-
tions, such as graph_0_cpp_fused_gelu_22. Inter-
estingly, torch.compile() results in several copies of
the same fused operation, each per layer. In addition, the
compiled version of the model uses less function calls, since

3Link to the GitHub repository of the Transformers library.
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Figure 4. PyTorch code of Llama MLP forward pass. Note three
linear projection layers, an activation function (SiLU) and an
element-wise multiplication.

Figure 5. FX Graph representation of the MLP forward pass using
ATen IR operations. Note the three matrix multiplication opera-
tions (aten.mm) corresponding to 3 linear projections.

it replaces many of the ATen operations with the compiled
subroutines.

5.2. Case-Study of MLP Compilation

We investigate how torch.compile() processes a
multi-layer perceptron. The MLP in the Llama3.2-1B
model uses 3 linear layers and a SiLU activation function
(silu(x) = x ∗ σ(x), where σ(x) is a logistic sigmoid
function) (Figure 4). The linear layers in the model are as
follows: up, gate – upscaling from 2048 into 8192, and
down – downscaling back to 2048. Initially, TorchDynamo
represents this single line of PyTorch code as a FX Graph
in the ATen IR, presented in Figure 5. For example, the
SiLU activation is performed in the following way: mm4
represents the output of the gate projection. It is followed by
the sigmoid operation, which computes σ(x), and finally the
element-wise multiplication of σ(x) ∗ x. Further operations
involve the up projection (mm5), the element-wise multi-
plication (mul12) and the final projection back to 2048
dimensional vector (mm6).

Such representation is passed to TorchInductor, which
implements vertical fusion of the SiLU computation.
The modified, readable Python representation of the
MLP is presented in Figure 6. While most of the
operations involve accelerator-specific matrix multiplica-
tion (extern_kernels.mm), TorchInductor reduces the
number of memory reads through fusing the computation
of SiLU and reordering the element-wise multiplication be-
tween SiLU outputs and the up projections. The operations
are replaced with a call to the cpp_fused_mul_silu_7
C++ OpenMP kernel. The kernel is implemented directly
in the generated C++ code, presented in Figure 7. For
each group of elements the CPU can process in parallel,
it loads previously computed projections of gate and up

Figure 6. Fragment of the readable compiled Python code corre-
sponding to the MLP forward pass. Note the use of the C++ kernel
cpp fused mul silu 7.

Figure 7. C++ OpenMP kernel for the fused multiplication and
SiLU activation computation.

(lines 13-14), computes the sigmoid on the former (line 15)
and performs the first element-wise multiplication of SiLU
(line 16) and the second one with the up projection (line 17).
Hence, it reuses the already loaded output of the sigmoig
and SiLU in computing the outcomes of the element-wise
operations and stores them only once.

5.3. Prefill+Decode: Eager vs Compiled per Token
Latency

In this experiment we compare three scenarios: 1) full model
in eager mode, 2) prefill stage inference in eager and com-
piling for decode, and finally 3) compiling before the prefill
stage. We present detailed results in table 1, where we
specifically focus on the prefill and first token latency, as
well as the total generation duration. Notably, we observe
that compiling before prefill results in two compilation pe-
riods: one for prefill and a recompilation for decode. This
is clearly visible as the prefill+decode mode has overhead
in both the prefill mode and the decode mode compared to
others. While the overheads lead to longer generations for
smaller batch sizes (1 and 4), the compilation brings the
total time down when more prompts are combined. Fur-
thermore, we observe a progressive gap in the eager and
compiled decoding latency per token in Figures 8a, 9a and
10a. Moreover, Figures 9b and 10b show after how many
tokens the compiled versions compensate the compilation
time. Hence, we conclude it is beneficial to compile a model
for the decode stage given large batches are used. On the
other hand, a nuanced difference of when in the program
the model is compiled may result in additional latency.
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Batch Size Mode Prefill Decode (first) Decode (rest) Decode/token (rest) Total

1
Eager 0.29 0.18 37.58 0.18 38.06
Compile (Decode) 0.30 7.88 35.44 0.17 43.63
Compile (Prefill+Decode) 8.55 7.40 35.71 0.17 51.67

4
Eager 0.38 0.34 72.48 0.36 73.22
Compile (Decode) 0.34 8.18 74.83 0.37 83.36
Compile (Prefill+Decode) 8.39 7.72 71.50 0.35 87.62

32
Eager 1.11 0.34 68.68 0.34 70.14
Compile (Decode) 1.10 7.81 58.38 0.29 67.31
Compile (Prefill+Decode) 9.57 8.22 59.56 0.29 77.36

128
Eager 4.78 0.99 157.73 0.78 163.52
Compile (Decode) 5.06 10.32 115.12 0.57 130.51
Compile (Prefill+Decode) 12.78 8.41 113.69 0.56 134.89

256
Eager 11.12 1.41 269.44 1.34 281.98
Compile (Decode) 9.70 8.75 177.98 0.88 196.44
Compile (Prefill+Decode) 16.81 8.49 199.72 0.99 225.04

Table 1. Comparison between spot instance LLM initialisations: eager, compiled after prefill, and compiled before prefill. Time in seconds.
We intentionally split the decode into the time taken to decode the first token (which results in additional recompilations), and the rest of
tokens.

(a) (b)

Figure 8. Comparison of studied compilation modes with batch
size 1. Horizontal lines in the left plot represent mean generation
times. Vertical dashed lines in right plot represent the end of prefill
stage, while dotted lines represent the end of first token generation.

(a) (b)

Figure 9. Comparison of studied compilation modes with batch
size 32.

(a) (b)

Figure 10. Comparison of studied compilation modes with batch
size 128.

5.4. Prefill+Decode: Compiling for Dynamic Prefill
Shapes

While compiling to static shapes may result in better opti-
misations, it is not possible when using a model for prefill
and decoding due to variable-length user inputs. Hence,
as we observed in the previous experiment, models com-
piled before the prefill stage suffer two recompilation over-
heads: the first one during prefill and the second one for the
first decoded token because the tensor shapes are changing.
Therefore, we studied the causes of those recompilations
in a scenario where initially the model is prefilled with 5
tokens, decodes one by one, then it is prefilled with 10
tokens for another round of decoding. Due to the pres-
ence of KV cache, the original model is initially already
split into 3 subgraphs. Without the flag dynamic=True,
there are 6 recompilations in total. The first compilation
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Figure 11. Token generation times under increasing prefill sequence size. Importantly, this process constitutes a single experiment, and
hence the compiled model is not manually reset between generations.

”bakes in” constant tensor sizes for prefill of 5 tokens. When
the model starts decoding, torch.compile() triggers
3 recompilations for different elements. Surprisingly, in
the next prefill stage with 10 tokens, there are additional 3
recompilations triggered to introduce symbolically traced
length of input token sequence. On the other hand, when
the flag dynamic=True is used, there are only 3 recompi-
lations during the decode step, resulting from the presence
of previously unpopulated KV cache.

Figure 11 shows a scenario when the model generates 300
tokens given increasing number of prefill tokens. We show
that when the model is compiled with the explicit instruction
to trace shapes symbolically (dynamic=True), it does not
recompile when the shape of prefill tensor changes. At the
same time, the generation performance is barely affected.

6. Conclusions
In this work, we focused on the application of
torch.compile() stack to optimising LLM inference.
The initial examples providing a brief overview of the toolkit
allowed better understanding of different system compo-
nents. Further case study showed how elements of an LLM
are converted into optimised code. Finally, the study of
inference on spot instances, provided useful insights into
how to ensure minimal overheads related to compilation.
One of the future direction involves investigating why com-
monly used computation patterns across the transformer get
compiled into different functions (e.g. activations in MLP
layers). While we managed to design initial experiments
and pose a hypothesis, the limited time resources did not
allow us to analyse and present the full results. Furthermore,
we studied the inference using a single implementation. To
provide a more comprehensive view of the field it is neces-
sary to understand how commonly used inference servers
such as vLLM (Kwon et al., 2023) or llama.cpp4 handle
compilation.

4Link to the Github repository of llama.cpp.
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