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What is Task Unlearning in LMs? How to Unlearn a Particular Task?

* Apply machine unlearning and optimise for the goals using a

Depending on the application, some of the abillities of Large combination of undesired and generic samples!

Language Models may be undesirable. While model alignment is (
possible, it is easier to gather negative rather than positive + Negative log-likelihood loss computed on the
prompt-response pairs. [ Combined Loss J undesired prompt-response pair.

|+ This component is negated, resulting in
gradient ascent optimisation.
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Task unlearning has two goals: - It aims to prevent undesired generations,

1. Decreasing model performance on an undesired task. X PO coiouiing s g J
2. Keeping the remaining abilities of the model unaffected. [ Unlearn Dataset Loss ] . Negative log-likelihood loss computed on a
+ prompt from the unlearn pair and a randomly
sampled response from the retain set.
w
* This component further reduces semantic

from unlearn set, contributing towards goal 1.
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[ Random Miss-match Loss }

[ Raw Model , « KL divergence term computed between the
L — ] LUnrelated i + predictions of the original model and the

™ 1] Question | [ an . . 5 ]) Queston model under unlearning on generic prompt-

. © :How to harm 7% ? ) § Q: Whatls 1+1: ) i | response pairs from the retain dataset.

(uEn: Step* \ (.|E|.: 141=2 \ X » This component aims to minimise the

- / - / [ Retain Dataset L } distribution shift of model generations for
Unlearned Model ctain Lalaset Loss the unrelated tasks, and therefore helps

maintain its overall performance (goal 2).
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f ium%md!] , _ \ijr?;f‘,‘,:‘:ﬁce  In addition to gradient ascent on undesired samples, minimise
& :How to harm ? D What is 1+17? _ : . g
; < ; < unlearning of the remaining model capabilities.
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‘ ’ ‘ ’ » Split undesired samples into small batches and update model
o | parameters sequentially after each batch.
* Unlearn the OPT-1.3B model responding in a toxic or harmful — ~
manner. { Large Task-specific Dataset ]
 Measure model safety using a question-answering task - e
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* Monitor its remaining capabillities using a set of generic task- U| = 1024 U| = 32 U;| = 8
specific benchmarks (e.g. Winogrande, MMLU, ARC). . Continuous Batch Sequential ),

Smaller Batches Better Preserve Overall Model Capabilities

Task Unlearning Methods for Model Harmfulness Benchmark Scores Difference Across Splits
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 All unlearning methods affect the model response format.




