
Improving Compute-Efficiency of
Federated Large Language Model

Training with Heterogeneous
Clients

Andrzej Szablewski

Churchill College

June 2025

Submitted in partial fulfillment of the requirements for the
Master of Philosophy in Advanced Computer Science

Total page count: 66

Main chapters (excluding front-matter, references and appendix): 53 pages (pp 7–59)

Main chapters word count: 13,926.

Methodology used to generate that word count:

texcount report.tex -inc

Declaration

I, Andrzej Szablewski of Churchill College, being a candidate for the Master of Philosophy
in Advanced Computer Science, hereby declare that this report and the work described in
it are my own work, unaided except as may be specified below, and that the report does
not contain material that has already been used to any substantial extent for a comparable
purpose. In preparation of this report, I adhered to the Department of Computer Science
and Technology AI Policy. I am content for my report to be made available to the students
and staff of the University.

Signed: Andrzej Szablewski

Date: 23rd June 2025

2

https://www.cst.cam.ac.uk/files/ai_policy.pdf
https://www.cst.cam.ac.uk/files/ai_policy.pdf

Abstract

Federated cross-silo training of large language models enables smaller institutions to col-
laborate on training foundation models in a decentralised fashion. While it does not
require participants to use a single highly-capable data centre, it introduces unique inef-
ficiencies when contributing parties vary in compute capacity and communication band-
width. This dissertation investigates how to maximise computational efficiency and con-
vergence in such hardware-heterogeneous settings. First, it characterises client idling
caused by disparities in mini-batch processing times and mini-batch size limits, proposing
four resolution strategies, one of which achieves particularly low idling time without a
decrease in model performance. Second, it empirically studies federated hyperparameter
optimisation under hardware heterogeneity by measuring gradient noise scale and study-
ing learning rates in both federated and centralised settings. Third, it introduces Se-
lective Multi-Head Attention (SMHA), which recognises redundancy among transformer
attention heads and trains only a subset of heads per client, with static and dynamic
head ratio schedules driven by neural representation similarity metrics. Finally, thorough
experiments on small GPT models show that combining heterogeneity-aware workload
balancing with SMHA can significantly shorten wall-time, incurring only a slight decrease
in convergence rate, and offering a practical path toward more efficient decentralised LLM
pre-training.

3

Acknowledgements

This project would not have been possible without the incredible support of Lorenzo
Sani, who dedicated countless hours introducing me to the challenges of modern federated
learning and was always open to discussing my ideas and debugging technical issues. Fur-
thermore, I am grateful to Prof. Nic Lane, who supported me throughout the project and
fostered a welcoming atmosphere that made me feel like a true member of the CaMLSys
group. Moreover, I would like to thank Alex Iacob for the numerous insightful discus-
sions on neural networks’ foundational workings and his invaluable writing suggestions.
Finally, I would like to express my deepest gratitude to my parents, whose unwavering
encouragement and support have been a constant source of inspiration throughout this
project.

In memory of my grandparents, who always supported me in achieving academic success.

4

Contents

1 Introduction 7

2 Background 9
2.1 Federated Learning . 9

2.1.1 Setup and Training Objective . 9
2.1.2 Federated Hyperparameters . 10
2.1.3 Cross-Silo Setting . 11

2.2 Large Language Models . 12
2.2.1 Generative Pre-Trained Transformer Architecture 12
2.2.2 Multi-Head Attention . 12

3 Related works 14
3.1 Federated Learning . 14

3.1.1 Decentralised Large Model Training 14
3.1.2 Heterogeneous Hardware FL . 14

3.2 Dynamic & Sparse Transformer Architectures 15

4 Methodology 17
4.1 Problem Statement . 17
4.2 Federated Learning with Heterogeneous Hardware 19

4.2.1 Minimising Client Idle Time . 21
4.2.2 Choice of the Mini-Batch Size . 23
4.2.3 Evaluation Metrics . 25

4.3 Selective Multi-Head Attention . 25
4.3.1 SMHA Design . 26
4.3.2 Model Comparison Metrics . 27
4.3.3 Static vs Dynamic Attention Ratio 30
4.3.4 SMHA in Heterogeneous FL . 32

5 Experimental Setup & Design 34
5.1 Experimental Setting . 34

5.1.1 Training Budget, Server Rounds and Local Steps 35

5

5.1.2 Implementation . 35
5.2 Experiment Design . 36

5.2.1 Hardware-heterogeneous FL . 36
5.2.2 SMHA Analysis in the Centralised Setting 39
5.2.3 SMHA in Heterogeneous FL . 40

6 Results 41
6.1 Hardware-Heterogeneous FL . 41

6.1.1 Learning Rate . 41
6.1.2 Gradient Noise Scale in Federated Learning 42
6.1.3 Heterogeneity Resolution Strategy 44

6.2 Selective Multi-Head Attention . 48
6.2.1 Centralised Study . 48
6.2.2 SMHA in Hardware-Heterogeneous FL 55

7 Conclusions and Future Work 58

Bibliography 60

A Code Listing 64
A.1 Centralised Experiments . 64
A.2 Federated Learning Experiments & Other changes 64

B SMHA Ablation Study Plots 65
B.1 Choice of Scheduler and Model Convergence 65
B.2 Attention Head Initialisation Method . 66

6

Chapter 1

Introduction

Federated learning (FL) has emerged as a paradigm for training machine learning models
across decentralised data sources without requiring raw data exchange (McMahan et al.,
2023). At the same time, Large Language Models (LLMs) built on the Transformer archi-
tecture (Vaswani et al., 2023) have demonstrated remarkable capabilities when pre-trained
on massive text corpora using self-supervised objectives (Brown et al., 2020; Kaplan et al.,
2020; Hoffmann et al., 2022). Bringing these two advances together resulted in the pos-
sibility of federated cross-silo pre-training of LLMs. This new application of FL is par-
ticularly useful for institutions, researchers and general communities that lack single-site
computational resources, enabling collaborative training of foundation models via pooled,
geographically distributed hardware. However, this setting also has several challenges
that, when not addressed, likely decrease the computational efficiency of the large-scale
model pre-training.

Firstly, federated training introduces new hyperparameters at both the client and federa-
tion levels, including the number of communication rounds, the number of local optimisa-
tion steps per round, the mini-batch size on each client, and the choice of inner and outer
optimisers. Tuning these federated hyperparameters is critical for convergence speed.
Still, it is complicated because clients may vary widely in compute capacity, network
bandwidth, and latency, resulting in hardware underutilisation when strict synchronisa-
tion is enforced (Yuan et al., 2023).

Secondly, pre-training LLMs at scale demands significant computational budgets. Models
with billions of parameters require days or weeks of training, with any inefficiency in
local training or communication translating into substantial energy and training wall-time
increases (Sani et al., 2024a). In heterogeneous cross-silo settings, where some participants
have access to high-end multi-GPU servers and others only own modest clusters, choosing
a homogeneous configuration risks slowing down the federation to the speed of the slowest
participant, or unevenly allocating workloads that slow down the global convergence.

To address these challenges, in this dissertation I set out three main objectives. Initially,

7

I aim to characterise and mitigate client idling in heterogeneous FL by analysing how
disparities in micro-batch processing times and maximum feasible batch sizes lead to
imbalanced workloads, and propose a solution adjusting the number of per-client samples
or local iterations. Furthermore, I look into federated hyperparameter optimisation under
compute heterogeneity, building on empirical measurements of gradient noise scale and
compute-optimal batch sizes. Extending the consideration to model hyperparameters,
I observe that attention heads in the Transformer may carry redundant information,
while requiring substantial compute. Taking advantage of their similarities, I propose
Selective Multi-Head Attention, an architecture-level intervention that trains only a subset
of attention heads on each client.

This project produces the following key contributions:

• An analysis of idling time in cross-silo federated training with heterogeneous micro-batch
speeds, resulting in multiple hardware-heterogeneity resolution strategies. Notably,
the top-performing method results in 8× less per-client idling time.

• Empirical studies of compute-optimal learning rate and gradient noise scale in both
centralised and federated settings, suggesting robust hyperparameter selection for
heterogeneous clients.

• The proposal of Selective Multi-Head Attention (SMHA), with both static and dy-
namic head-ratio scheduling, followed by a thorough analysis of how fractional-
parameter training influences LLM training dynamics.

• A comprehensive experimental evaluation on small-scale GPT models, demonstrat-
ing that the heterogeneity-aware strategies combined with SMHA reduce training
wall-time by 14%, but lead to a slightly lower convergence rate.

This dissertation is structured into seven chapters. Following this Introduction, I describe
the essential background information, which forms the basis of the problem, proposed
solutions, and the experimental studies in Chapter 2. Furthermore, I describe related
works in Chapter 3. In Chapter 4, I introduce the problem and describe the methodology,
explaining both the hardware-heterogeneous optimisation hyperparameters as well as the
dynamic neural architecture intervention. Chapter 5 described the experimental setup,
including the details of simulated federation participants as well as the choice of model
and training data. Following that, I demonstrate and discuss the results in Chapter
6. Finally, the main body of this dissertation is finalised by Chapter 7, mentioning
conclusions, limitations and avenues for future studies. This document ends with two
Appendices A and B, the first of which summarises the developed software, while the
second includes complementary experimental results.

8

Chapter 2

Background

2.1 Federated Learning

2.1.1 Setup and Training Objective

Federated learning (FL) is a distributed training paradigm in which a central server
and many client devices collaboratively optimise a shared global model without ever
exchanging raw data. Each client c holds a local partition of a shared dataset D, where
P⌋ are the set of indices associated with client c. Each client c has a partition of nc

samples (xi, yi) and a copy of the model parameters w, and defines its own empirical loss:

Fc(w) =
1

nc

∑
i∈P⌋

l(w;xi, yi).

The overall objective of federated learning is the minimisation of the weighted sum of the
local losses:

f(w) =
C∑
c=1

nc

C
Fc(w).

Common aggregation strategy, FedAvg (McMahan et al., 2023), solves this by repeating
synchronous communication rounds: at each round t, the server samples a subset of clients,
sends them the current global weights w(t), and each client performs a fixed number of
local stochastic gradient descent (SGD) steps on its Fc, producing updated weights w(t+1)

c .
The server then aggregates these updates by weighted averaging of client models to form
the new global model w(t+1).

In large model training, simple SGD optimisers are commonly replaced with adaptive
methods (e.g. AdamW (Loshchilov and Hutter, 2019)), which are less sensitive to the
optimisation hyperparameters. Using different inner and outer optimiser, results in a
general bi-level optimisation framework, in which clients supply the server with updated
per-round model parameters trained with the inner optimiser, further used by the server

9

to compute the pseudogradient ∆(t+1) = 1
|C|
∑

c∈C(w
t − w

(t+1)
c). The pseudogradients

are used by the outer, federation-level optimiser. Such a general framework allows for
more advanced optimisation methods, such as aggregating optimiser states (Cheng and
Glasgow, 2025).

2.1.2 Federated Hyperparameters

The decentralised federated setting results in the emergence of additional hyperparam-
eters, influencing the optimisation. A key federated hyperparameter is the number of
communication rounds R. This determines how many times clients synchronise with the
server: increasing R generally improves model convergence but also raises the total com-
munication cost and latency before deployment. Assuming constant bandwidth between
clients, growing model size leads to longer synchronisations. If synchronisation periods
are very long, they may lead to significant bottlenecks and hardware underutilisation. A
closely related hyperparameter is the client participation fraction – the proportion of all
clients selected each round. While it is essential in the context of non-IID data partition-
ing, this work focuses on scenarios where clients have access to the full shared dataset
and data is IID partitioned.

Another hyperparameter is the number of local steps L, which translates to the number
of mini-batch gradient updates each client performs before returning its model to the
server. If each client’s dataset has nc examples and the batch size is B, then one full
epoch corresponds to L = ⌈nc/B⌉ steps. Under IID data, increasing L straightforwardly
reduces the total number of communication rounds needed for convergence, since each
client’s update becomes a more accurate estimate of the global gradient. In practice,
however, very large L can yield diminishing returns and be limited by the high costs of
frequent communication.

The mini-batch size controls the granularity of each gradient estimate. A larger B reduces
the variance of the stochastic gradient, which can permit a larger learning rate and faster
per-step convergence. Conversely, a smaller B injects more noise into each update, which,
under IID data, can help explore the loss landscape and improve generalisation. Notably,
the mini-batch size is strictly related to the number of local steps L, under a constant
training budget T .

The learning rate must be tuned to accommodate L and B. Under IID data, the standard
convergence analyses for SGD apply: if the learning rate is too large, updates will oscillate
or diverge; if too small, progress per round will be slow, and many more communication
rounds will be needed. A common strategy is to scale the learning rate roughly linearly
with B (so that the expected per-step variance remains constant) and to decay it over the
course of training with a learning rate scheduler. The challenge of learning rate scaling
can also be approached using square root scaling or other methods (Li et al., 2024).

10

Hyperparameter Symbol Description

Number of communication rounds R Number of times clients synchronise with the
server. Increasing R generally improves con-
vergence but increases total communication
cost and latency.

Client participation fraction P Proportion of all clients selected each round.
Affects convergence speed and variance, par-
ticularly under non-IID data. In this work, I
consider cross-silo setting and assume P = 1.

Number of local steps L Number of mini-batch gradient updates each
client performs before aggregation. Larger
L reduces needed communication rounds but
increases local compute.

Mini-batch size B Number of examples per local gradient up-
date. Larger B lowers gradient variance (al-
lowing larger learning rates), while smaller B
adds noise that can aid exploration.

Learning rate η Step size for each gradient update. Usually
tuned along B and L: too large causes diver-
gence; too small slows convergence. Often
scaled with B and decayed over time.

Table 2.1: Key hyperparameters in a decentralised federated learning setting.

2.1.3 Cross-Silo Setting

Cross-silo federated learning is a collaborative training paradigm in which a small, fixed
set of organisationally distinct “silos" (e.g. banks, hospitals, scientific institutions) jointly
train a shared global model by exchanging only model updates rather than raw data. Re-
cently, this method has been proved successful in decreasing training times of particularly
large models (Sani et al., 2024a; Douillard et al., 2025), conceptually acting as a single
decentralised data centre. Cross-silo FL rests on several foundational assumptions that
differentiate it from cross-device scenarios. First, the system comprises a small number of
participants, whose membership remains stable throughout training. Each silo is expected
to be reliably online and responsive in every communication round. Because of significant
compute resources, silo-sized clients can perform multiple local iterations with large batch
sizes. However, only some institutions are equipped with high-bandwidth network links
between data centres, which allow the exchange of billion-parameter models, while many
others use commercial network links. In those cases, a large number of communication
rounds results in client idling and a significant amount of time spent exchanging param-
eters. To avoid the severe impact of this issue in a large model regime, the number of
communication rounds needs to be carefully chosen.

11

2.2 Large Language Models

Federated learning introduces additional hyperparameters, while infrequent parameter
synchronisations effectively modify the optimisation procedure. Other key factors in
training a Large Language Model are the hyperparameters defining its neural architecture.
Hence, a comprehensive understanding of the field of LLMs is important.

Large Language Models are deep neural networks, generally based on the Transformer
architecture, and pre-trained on massive text corpora via self-supervised objectives such
as next token prediction (causal language modelling). By scaling both the number of
parameters and the diversity of training data, LLMs learn rich, contextual representa-
tions that enable them to generate human-like text. Pre-training typically leverages vast
distributed compute to optimise the autoregressive objective, after which models can be
adapted through fine-tuning. This work focuses on the former.

2.2.1 Generative Pre-Trained Transformer Architecture

To understand the architectural changes described further in this work, it is essential to
familiarise oneself with key components of Generative Pre-Trained Transformer (GPT)
(Radford et al.). This neural network consists of l identical Transformer decoder blocks,
each of which transforms an input token embedding into a contextualised representation
through two main components: an attention layer and a feedforward layer. The for-
mer updates hidden representations, respecting the patterns present in the sequence of
input tokens, while the latter applies non-linear transformations to the updated hidden
representations. The rest of this study focuses on the attention mechanism.

2.2.2 Multi-Head Attention

Attention is a commonly used function in neural architectures to transform between dis-
crete input sequences. It can be intuitively understood as a transformation of each se-
quence element into an average of other input elements, weighted by the pairwise similarity
between each pair.

To compute attention in practice, each dmodel-dimensional sequence element is linearly
projected into three l-dimensional representations: query, key and value vectors using
corresponding weight parameters. Assuming an n-dimensional input sequence, we obtain:

Q = XWq K = XWk V = XWv,

where X ∈ Rn×dmodel represents the input sequence, and Wq,Wk ∈ Rdmodel×dk and Wv ∈
Rdmodel×dv are the projections. Practically, dk and dv are usually set equal.

The original implementation of attention in the Transformer, the Multi-Head Attention,

12

computes attention multiple times, over distinct sets of weights. The outputs of those
so-called heads are subsequently aggregated using another learnt linear projection. The
attention output for the ith head, is given by:

H(i) = softmax(
XW

(i)
Q (XW

(i)
K)T

√
dk

)XW
(i)
V ,

with H(i) ∈ Rn×dv . The Multi-Head Attention (MHA) with nhead heads is obtained by
subsequently:

Hconcat = Concat2([H1,H2, ...,Hn])

MHA(X) = HconcatWo,

where Wo ∈ Rnheaddv×dmodel and Concat2 joins matrices in the second dimension.

(a) In the original MHA implementation, keys,
queries and values are computed simultane-
ously for all attention heads by a joint param-
eter matrix WKQV .

(b) To accelerate training, computations of at-
tention weights can be batched together, elim-
inating step 2. and combining steps 3. and 4.
Note, that this results in replacing 2m multi-
plications with just two matmul operations.

Figure 2.1: Multi-Head Attention component within a Transformer layer. Note that,
because of efficiency reasons, MHA batches and parallelises the computation of all heads.
The attention scaling factor is omitted in both diagrams for brevity.

13

Chapter 3

Related works

3.1 Federated Learning

3.1.1 Decentralised Large Model Training

Cross-silo federated learning has recently been applied to training very large neural archi-
tectures because of its advantage to decentralise training on expensive computing hard-
ware across multiple participants (Yuan et al., 2023; Sani et al., 2024a,b; Douillard et al.,
2024). Photon, the first end-to-end system for federated LLM pre-training, demonstrates
training a 7B parameter model, exceeding centralised perplexities (Sani et al., 2024a).
Furthermore, Sani et al. (2024a) show it is possible to reduce communication by up to 3
orders of magnitude through infrequent cross-silo synchronisation. Building on this, Ia-
cob et al. (2024) propose WorldLM, a hierarchical “federation of federations" framework
that partitions models into a shared backbone and personalised layers. OpenFedLLM
integrates seven federated algorithms to fine-tune Llama2-7B on private user data for
downstream instruction tuning and value alignment, demonstrating superior performance
over local baselines (Ye et al., 2024). To further decrease bandwidth, DiLoCo employs
local AdamW updates with momentum-equipped outer optimiser, and hundreds of lo-
cal steps per synchronisation, achieving parity with synchronous training at 500× lower
communication (Douillard et al., 2024). Finally, Streaming DiLoCo overlaps sequential
synchronisation with computation to significantly reduce peak bandwidth and training
wall-time (Douillard et al., 2025). To validate the empirically observed benefits of de-
centralised, cross-silo large model training, He et al. (2024) show that local SGD obeys
power-law scaling of validation loss with model size, matching distributed data-parallel
performance.

3.1.2 Heterogeneous Hardware FL

Federated learning must contend with client hardware heterogeneity. Client devices differ
in compute speed, memory, and network link, which may lead to slower delaying synchro-

14

nised training rounds, or worsening the overall convergence. Algorithmic approaches may
adapt the FL optimisation itself to account for straggling clients. For example, FedProx
introduced flexible local update regimes, allowing faster clients to perform more epochs
of training while limiting slower ones, accounting for the inconsistent local workloads (Li
et al., 2020). Similarly, FedNova uses a normalised averaging technique to correct for
different amounts of work done per client, eliminating the bias in standard FedAvg when
clients perform heterogeneous numbers of local steps (Wang et al., 2020).

Another line of work is to relax the strict synchronisation of FedAvg via asynchronous
federated learning, such as in the ASO-FL framework introduced by Chen et al. (2020)
or recently DiLoCo by Douillard et al. (2024). In asynchronous FL, the server does not
wait for all clients in a round, and instead it updates the global model whenever a client’s
result arrives. However, the challenge becomes dealing with stale updates: theoretical
convergence analyses show that the convergence rate of asynchronous FL often depends
on the maximum delay of client updates.

Finally, beyond client selection, researchers have looked at resource-aware local training
hyperparameter optimisation. For example, Sani et al. (2024a) demonstrate the use of a
significantly larger learning rate on the clients, which would lead to model divergence in
a centralised setting.

3.2 Dynamic & Sparse Transformer Architectures

Modern approaches to dynamic and sparse neural architectures seek to adaptively prune
or route computation to match available resources and input complexity. However, this
is not directly feasible in dense architectures like the original Transformer, since output
computation depends on all model parameters. Hence, several methods for sparsifying
the transformer have been proposed.

One of the methods is Mixture of Experts, employed in a Switch Transformer, which trains
multiple feedforward components per layer, but uses only some of them for next token
prediction (Fedus et al., 2022). Similarly, SwitchHead introduces MoE to attention layers
by maintaining a small number of attention matrices (heads) but equipping each with
multiple value/output experts (Csordás et al., 2024b). Complementing this, the Mixture
of Attention Heads (MoA) mechanism routes each token to a learned subset of k attention-
head experts. Following that, a lightweight router network selects, for each token, the
most relevant heads from a larger pool, enabling the model to scale the number of active
heads dynamically per input while maintaining expressivity (Zhang et al., 2022). Finally,
MoEUT uses fine-grained MoE blocks in feedforward and self-attention layers, exceeding
standard Transformer performance in language modelling with far fewer compute and
memory requirements (Csordás et al., 2024a). Crucially, Xia et al. (2023) studied how
increasing model capacity by resizing parameter matrices in a Vision Transformer modifies

15

model behaviour and maximises the gains from a limited training budget.

Sparsity has also been explored in Federated learning through methods such as SparsyFed,
which dynamically computes sparse gradients for only some parameters, saving local com-
pute (Guastella et al., 2025). Other sparsity-enhancing methods were developed to im-
prove communication efficiency or the objective convergence in non-IID settings (Hu et al.,
2022). However, note that a limited number of works focus on reducing local client com-
putation.

16

Chapter 4

Methodology

This chapter starts with an overview of the core problem and the outline of the fed-
erated setting, presented in Section 4.1. It continues in Section 4.2 with the analysis
of optimisation hyperparameters, which are crucial for maximising compute efficiency of
federated learning (FL), especially when clients differ in their hardware capabilities. The
chapter continues by proposing a modification to the neural architecture of Transformer
models – Selective Multi-Head Attention (SMHA), and describing its thorough study in
the centralised setting (Section 4.3). Finally, it describes the proposed combination of
the compute-efficiency improving strategies with the application of SMHA to hardware-
heterogeneous FL in Section 4.3.4.

4.1 Problem Statement

This dissertation focuses on a particular use case of federated learning, intended as collab-
orative cross-silo large model pre-training. The advantages of this method over the single-
site training include a shorter training wall-time, the possibility to aggregate computing
power from multiple sparsely-connected sites, and potential access to higher-quality train-
ing data. These benefits can be crucial enabling factors for smaller institutions, such as
universities or research labs, to collaborate on training models with capabilities they could
not achieve alone. Notably, the federated learning setting this dissertation is interested
in can be characterised by the following properties:

• IID Dataset Partitioning. The clients source training samples from a federated
dataset, a large text corpus sharded across them. Each shard has independently
and identically distributed samples. Note that in the case of LLMs, the samples
in pre-training corpora are often assumed to be IID. Hence, this work may also be
relevant for scenarios when clients use private data.

• High-Performance Clients. The participants of the collaborative training are
sufficiently funded to afford the use of multi-GPU hardware.

17

• Sparse Synchronisation. Frequent synchronisation of the model parameters,
such as once per mini-batch as in the distributed data parallel pipelines, is impossible
due to the latency and bandwidth constraints between the clients and between the
clients and the server.

• Dense Neural Architecture. The neural model is built on a dense architec-
ture, so that each client must be able to hold a full copy of the model at all times.
Hence, it is not designed to be trained separately.

In federated environments with no or limited system heterogeneity among clients, the
participants usually share a single configuration of local training hyperparameters. This,
in turn, results in similar per-round contributions from every client, as well as performing
the same number of local optimisation steps, each taking almost identical duration. Given
similar network bandwidth between clients, the federation can synchronise immediately
after each round, with minimal client idling time. A similar level of client contributions
simplifies tuning the federation hyperparameters, such as the global learning rate.

Other federated environments facilitate the expansion of the number of contributors by
admitting heterogeneous computing devices among clients and communication over het-
erogeneous networks. For example, smaller institutions involved in a collaborative pre-
training of foundation models often differ in access to computing hardware. Hence, differ-
ent hardware capabilities of the clients pose an additional challenge of optimising each of
them separately. To minimise the underutilisation of the system caused by the difference
in processing times of faster and slower clients, it is possible to modify the number of local
steps and the amount of data processed by each of them. However, when clients apply
different hyperparameters for their local optimisation, their per-round contributions will
likely differ in quality. This, in turn, may lead to sub-optimal convergence rate and final
performance of the aggregate model. Participating sites may also differ in access to stable
high-bandwidth network links, causing additional delays. However, this dissertation does
not focus on the problem of communication, assuming a stable, intra-region connection
between computing sites.

Summarising, this work investigates the choice of hyperparameters in FL with heteroge-
neous hardware, optimising for two objectives:

1. Minimising the idling time of the computing systems,

2. and achieving the lowest validation loss.

18

4.2 Federated Learning with Heterogeneous Hardware

Figure 4.1: Differing client hardware influences the duration and the number of samples of
a local step. This, in turn, results in idling of one of the clients before the synchronisation
point (green vertical line). Top: two clients with identical compute capabilities. Bottom:
client 2 with less capable hardware than client 1.

In a standard, hardware-homogeneous setting, clients use identical hardware. Hence, the
hardware-related aspects of local optimisation are usually identical as well. This means
that the maximum micro-batch size Bmax (a maximum number of samples that fits into
accelerator memory), as well as the corresponding processing time of a micro-batch tbmax,
are the same across participants. In the heterogeneous case, hardware differences directly
influence the maximum micro-batch size and processing time, leading to distinct values for
each of the clients. To understand how this differs from the case of identical client compute
capabilities, let’s consider the following toy example and assume a fixed training budget
of T samples, fixed number of server rounds R, but two different clients C1 (Bmax = B1,
tbmax = t1) and C2 (Bmax = B2, tbmax = t2), where B1 = kB2 for some k and t1 > t2.
Proceeding similarly to the homogeneous case results in client C2 processing k× fewer
samples than C1, as shown in Figure 4.1. This is an issue, since the full training budget
T cannot be achieved without increasing the number of rounds R. I explore several
strategies to proceed about this heterogeneity:

1. Proceed with the same number of iterations per client within a round. Apart from
different numbers of samples processed by each of the clients per round, the number
of local steps needs to be rescaled by 2B1

B1+B2
to use the entire training budget T

(Figure 4.3a).

2. To stay consistent with the number of samples processed by each client per round,
client C2 performs k× the number of C1’s micro-batches (Figure 4.3b). Two cases
arise:

(a) Both clients set their mini-batch sizes equal (C2 uses gradient accumulation),
allowing them to use the same learning rate.

19

1 2 3 4
0

0.5

1

1.5

2

k

Id
le

T
im

e
M

ul
ti

pl
ie

r

2k
k+1
k θt

(a) Comparison of the per-round idle-time
overhead of Strategy 1 and both instances of
Strategy 2, for an example value of θt = 0.6,
empirically measured using NVIDIA A40 GPU
in small LLM training. Note that k is a multi-
ple of a mini-batch size, and hence the domain
is integral. For smaller k, Strategies 2a and 2b
will result in a shorter idle time. For larger k,
Strategy 1 is preferable for minimising the idle
time.

5 10 15

0.2

0.4

0.6

0.8

1

Strategy 2

Strategy 1

k

θ t

θt

(b) The boundary mini-batch process time ra-
tio θt between which strategy minimises the
idle-time, for all values of mini-batch size mul-
tiples k. Given the asymptotic shape of the
curve, growing k initially requires a significant
decrease in θt for Strategy 2 to be optimal.
The decrease further plateaus. Note that k
can be integral only.

Figure 4.2: Formal analysis of minimal idle-time between Strategy 1 and both instances
of Strategy 2.

(b) Client C2 performs k× more optimiser steps with a lower learning rate, reflect-
ing the centralised theory.

Compared to a homogeneous case, where both clients have C1’s specification, the first
scenario extends the training duration by a factor of 2B1

B1+B2
= 2k

k+1
, during which C2 is

idling. On the other hand, the next two approaches leave the number of local iterations
unchanged, but extend the round’s duration by approximately kt2

t1
, during which C1 is

idling.

Note that the idling time in both cases, 2a. and 2b., scales linearly with k with a constant
t2
t1

. On the other hand, in the first case, the time multiplicative factor 2B1

B1+B2
= 2k

k+1
is

asymptotically bound by:

lim
k→∞

2k

k + 1
= 2.

Hence, to study which of the first three scenarios results in the shortest idling time of the
system, it is necessary to empirically measure the ratio of micro-batch processing times
θt =

t2
t1

. Figure 4.2a presents the idle time scaling for θt = 0.6. Solving 2k
k+1

= kθt for θt,
results in two regimes:

• θt <
2

k+1
results in a shorter idle time in strategies 2a. and 2b.

• θt >
2

k+1
results in a shorter idle time for strategy 1.

Figure 4.2b shows the boundary function θt(k) =
2

k+1
between the two regimes.

20

4.2.1 Minimising Client Idle Time

To limit the idling of C1 or C2, both clients can perform a different number of mini-batches
per round to minimize the time difference arising between them1. This, however, may
result in a different number of samples processed by each client. I refer to this strategy
as strategy 3, and present in Figure 4.3c.

To estimate the duration and the amount of idling of this last approach, it is necessary
to formalise this problem further. To minimise the idling of the clients, I aim to find
n,m ∈ Z+, such that:

min
n,m

∣∣nt1 −mt2
∣∣, (4.1)

subject to (4.2)

S = nB1 +mB2, (4.3)

where S = T
R

is the total number of samples per round across clients. The aim of the
constraint is to ensure the total number of samples processed in a round is S. Rewriting the
constraint to S = (nk+m)B2, simplifies the problem, which can be solved by substituting

and rearranging the terms, leading to the real-valued minimiser n∗ =
S
B2

t2

t1+kt2
. Given n

needs to be integral, the solution is either ⌊n∗⌋ or ⌈n∗⌉, depending on which pair (n,
m) minimises the problem. Finally, the duration of the round is given by nt1 or mt2,
whichever is larger, while the idling time is given by their difference.

Generalising to C Clients

Minimising the client idle time becomes even more important when the number of partici-
pating clients increases, because even a single less capable client can result in a significant
underutilisation of the federation. This problem can be generalised to arbitrary S, and
C clients, each with a different pair of configuration (Bmax = Bi, tbmax = ti). While
minimising the sum of all client idle times

∑C
i=1 (minj (njtj)−niti), would lower the total

idle time in the system, the clients are not identical, and the cost of their underutilisation
is not the same. Hence, similarly to the case C = 2, I decide to minimise the maximum
pairwise difference between processing times for any two clients. For ni ∈ Z+, the problem
becomes:

min
ni

max
i<j

∣∣ni ti − nj tj
∣∣, (4.4)

subject to (4.5)

S =
C∑
i=1

ni Bi. (4.6)

1Clients may perform more than one micro-batch per optimiser iteration, but for the simplicity of this
example, I assume clients avoid accumulating gradients, if possible.

21

(a) Strategy 1.

(b) Strategies 2a and 2b.

(c) Strategy 3.

Figure 4.3: Hardware-heterogeneity resolution strategies.

This revised task is an instance of a minimax problem, involving minimising the largest
difference between any two products niti. Conveniently, the minimax objective can be
turned into a linear objective by introducing auxiliary variables M = maxi niti, m =

minj njtj, converting

min
ni

max
i<j

∣∣ni ti − nj tj
∣∣ = min

i

[
max

i
niti −min

j
njtj

]
(4.7)

into:

min (M −m) (4.8)

subject to (4.9)

niti ≤ M, niti ≥ m. (4.10)

S =
C∑
i=1

ni Bi. (4.11)

This is a mixed-integer linear program, which we efficiently solve for a relatively small
number of clients C < 100 using a MILP solver by enforcing bounds on the problem
variables. Once solved, the round duration is given by maxi ti, while the amount of idling
can be inferred as

∑c
i ̸=j

[
argmaxj(tj)− ti

]
.

22

Summary of the Heterogeneity Resolution Strategies

To summarise the two-client scenario, the following Table 4.1 presents the homogeneous
(B1 = B2, t1 = t2) case, as well as the four considered strategies of handling hardware
heterogeneity of 2 clients C1, C2.

Steps/round Samples/round Round time

Strategy C1 C2 C1 C2 C1 C2

homo. L L×B1 L× t1

1. L× 2B1

B1+B2
L× 2B2

1

B1+B2
L× 2B1B2

B1+B2
L× 2B1

B1+B2
× t1 L× 2B1

B1+B2
× t2

2a. L L×B1 L× t1 L× k × t2
2b. L L× k L×B1 L× t1 L× k × t2
3. n m n×B1 m×B2 n× t1 m× t2

Table 4.1: Summary of how the key federated hyperparameters change depending on the
choice of the strategy. Top row shows a comparison to a homogeneous-hardware baseline
with two clients C2.

4.2.2 Choice of the Mini-Batch Size

The LLM pre-training generally falls into the large mini-batch-size regime, as described by
(McCandlish et al., 2018). Its authors empirically show that when training large models
in a highly data-parallel environment, there exists a compute-optimal critical mini-batch
size Bcrit. Increasing the mini-batch size until Bcrit increases the rate of convergence
of the machine learning objective. However, growing mini-batch size past Bcrit results in
diminishing returns. To chose an optimal combined mini-batch size Beff for the hardware-
heterogeneous clients, I follow the methodology described in the paper: find an optimal
learning rate, measure the gradient noise scale Bnoise at each step, and set Bcrit to the
average of Bnoise of the training. We approximate the Bnoise as Bsimple = tr(Σ)

|G|2 , where Σ

is the covariance of the gradient of the optimisation step G. To get an unbiased estimate
of Bsimple, I use the methodology described in Appendix A.1 of the work by McCandlish
et al. (2018).

Learning Rate

To choose an optimal learning rate, which is necessary for reliable Bcrit estimation, I
search for the learning rate in a pre-defined interval, with a reasonable mini-batch size
value. To do so, I use a centralised setting, and apply the identified learning rate value to
the federated case. However, the chosen mini-batch size is going to affect how reliable the
estimation of the learning rate value is. Hence, I study whether the centralised learning
rate search should be based on the sum of the mini-batch sizes of each clients (the effective
mini-batch size Beff), or the average mini-batch size of a single client. To do so, for each
studied learning rate value, I compare the convergence of the ML objective in a hardware-

23

homogeneous federated learning case, where every client uses a mini-batch size of Beff

C
to

a:

• centralised setting with a mini-batch size Beff , and

• centralised setting with the average mini-batch size of a client Beff

C
.

Following the study, I choose the centralised setting learning rate that is closer to the
hardware-homogeneous FL case. For the heterogeneous mini-batch size across clients, I
apply the linear learning rate scaling.

Gradient Noise Scale in the Federated Scenario

While McCandlish et al. (2018) experimented with measuring gradient noise scale in
various machine learning scenarios, the metric has not been studied in the context of
federated learning. Hence, to understand whether it is even suitable in the setting with
infrequent parameter synchronisations, I compare the behaviour of Bsimple in two cases:

• Centralised case, with a fixed learning rate (estimated through the procedure de-
scribed in the above sub-section) and the mini-batch size of Beff .

• Hardware-homogeneous case, with the same learning rate value and the per-client
batch size Beff

C
.

Point readouts of the Bsimple are noisy on their own, hence a smoothing described in the
original paper is applied. This method only works when tr(Σ) and |G|2 are measured
frequently, i.e. every local optimisation step. Measuring the values of per-client Bsimple

between rounds is not feasible due to a limited number of values.

Note, that the original study does not consider the case when the learning rate changes
throughout training. LLM pre-training commonly involves using learning rate decay and
warm-up phases, which additionally alter the value of Bsimple. Hence, I additionally study
the mean values in different phases.

Mini-Batch Size and Local Steps

In the case of homogeneous hardware of the clients, the number of local optimisation
steps L is tuned together with the mini-batch size and generally set equal for all of the
clients. However, when the clients differ in their compute capabilities, it becomes a new,
client-specific hyperparameter arising in the setting. To study its influence on the machine
learning objective convergence, I combine the strategies introduced earlier in this section
with the analysis of optimal mini-batch sizes. Given a fixed number of samples per round,
there is a trade-off between the mini-batch size and the number of local steps. Whenever
possible, I aim to use the theory-predicted Bcrit. Otherwise, the available mini-batch
size for every client is determined by its Bmax and the heterogeneity resolution strategy
selected.

24

4.2.3 Evaluation Metrics

To evaluate the quality of the selected hyperparameters, several metrics are used. I
measure the model performance by computing the per-round and final validation set
perplexity using the aggregated model. To understand the utilisation of the accelerators
in the system, I track the per-client and per-round training time, client throughputs, and
the total training wall-time.

Given differently configured clients, it is interesting to study how much each of the cor-
responding local versions of the model changes after a single round. To understand the
per-round source of improvement in the aggregated model, I additionally measure val-
idation set perplexity on each instance of a model before (aggregated model from the
previous round) and after local optimisation. The corresponding PPL

(i)
pre and PPL

(i)
post

values can be further compared and studied over time, for every round i. Note, that when
using FedAvg, I expect the PPL

(i+1)
pre to be lower than PPL

(i)
post, due to the aggregation

and averaging of individual pseudogradients. Hence, given a client c and a round i, I
define a client gap ratio as:

G(i)
c =

PPL
(i)
post(c)

PPL
(i+1)
pre (c)

.

4.3 Selective Multi-Head Attention

So far, this study has focused on the hyperparameters related to the federated setting and
the process of optimisation. To further compensate for the varying hardware capabilities
of the federated clients, one can look for possible changes in the neural model architecture.
However, training local models with arbitrarily varying neural architectures requires one
to resolve how to aggregate parameters of models with possibly varying numbers of layers,
or parameters within a layer.

The neural architecture typically used for LLM training at scale – the Generative Pre-
Trained Transformer (GPT) – has been extensively studied in the direction of the use-
fulness of its key components – the attention and feedforward layers. Specifically, there
have been growing efforts towards understanding their role in generating human-like text.
However, many of their aspects are still unexplored. In the effort to further equalise
the computation of heterogeneous federated clients, we focus on one of the aspects in
particular: the compute-optimal number of attention heads in each transformer block.

The use of the originally proposed Multi-Head Attention mechanism or its generalisa-
tion (Group-Query Attention) by design allows for independently computing all attention
components (queries, keys, values) for each head. Hence, it is possible to compute only
a subset of them at each iteration. Recent studies suggest that different attention heads
learn similar transformations and produce similar attention maps, indicating some level
of redundancy (Jo and Myaeng, 2020). From the computational perspective, the redun-

25

dancy is not desired, since it unnecessarily consumes resources. Building on top of these
findings, the following research question arises:

Can different federated clients share a copy of the same model but train only some of its
attention heads?

4.3.1 SMHA Design

Following Xia et al. (2023), who considered a similar concept in the context of computer
vision, we reformulate the attention mechanism introduced in Section 2.2.2 as follows, to
highlight the independent computation for each head:

H(i) = softmax(
XW

(i)
Q (XW

(i)
K)T

√
dk

)W
(i)
V . (4.12)

The final projection can be expressed as a concatenation of block matrices

Wo = Concat1([W(1)
o ,W(2)

o , ...,W(nhead)
o]), (4.13)

where W
(i)
o is a R

dv
nhead

×dmodel projection, corresponding to the output of the ith head.
Then, we define Selective Multi-Head Attention (SMHA) over a set of heads Ih as:

SMHAIh(X) =
∑
i∈Ih

H(i)W(i)
o . (4.14)

This allows to control the number of attention heads in each layer, and therefore to modify
the neural architecture. The fraction of the active attention heads over all available heads
in each layer l, is defined as attention ratio of layer l: α

(l)
attn = |Ih|

nhead
. Note that the

original Multi-Head Attention is the special case of the above formulation, and is achieved
with α

(l)
attn = 1, when |Ih| = nhead in all layers.

Dynamically changing the number of trained attention heads may have serious implica-
tions for the training stability and the end model performance. Hence, I first study its
effects in the simple scenario of centralised training. Initially, I compare model training
runs varying only in the number of heads trained. Incorporating the results, I further
explore whether it is possible to dynamically add attention heads to increase the capacity
of the model to capture more sophisticated language patterns.

26

Figure 4.4: Selective Multi-Head Attention component within a transformer layer. Due
to the block matrix multiplications used to accelerate training, its sufficient to mask and
rearrange attention weights to select the desired heads. The attention scaling factor is
omitted for brevity.

4.3.2 Model Comparison Metrics

Language Modelling Performance

To compare different instances of trained language models, I use Perplexity (PPL) as a
primary metric. Perplexity is a direct measure of the language modelling objective and is
relatively cheap to compute, hence it is reported frequently. Using popular benchmarks of
downstream model abilities such as general knowledge (e.g. MMLU), commonsense natu-
ral language inference (e.g. HellaSwag) or commonsense reasoning (e.g. Winogrande) has
a very limited use-case for small models due to their relatively high difficulty. Using those
benchmarks showed unreliability and often resulted in worse than random performance
in initial experiments, hence I discontinued using them.

Attention Map Similarity Measure

The key foundation of the idea of pre-training with a deficient number of heads is the
redundancy in patterns they capture at each layer. Hence, I need a method to capture
and quantify the amount of similarity between contributions of attention heads.

One way to study the attention mechanism is by investigating the so-called attention
maps. To compare the behaviour of the distinct attention heads, I compare the maps
they produce over identical input token sequences. To quantify the similarity between
them, I use Centered Kernel Alignment (CKA) with a linear kernel k(x,y) = xTy. Acting
as a similarity measure invariant to isotropic scaling and orthonormal transformations,
it measures the correlation between the column-spaces of the attention maps and better
exposes the syntactic and semantic dependencies between tokens. CKA is defined as:

27

CKA(K,L) =
HSIC(K,L)√

HSIC(K,K)HSIC(L,L)
,

where HSIC(K,L) is a Hilbert-Schmidt Independence Criterion between input matrices
K, L, which can be empirically estimated as follows:

HSICb(K,L) =
1

(n− 1)2
tr(KHLH),

where n is the sample size, and H is a centering matrix, defined as H = In − 11T .

To get a reliable measure of attention head similarity, I compute HSIC over a large
number of input sequences. To correct for the bias of the above estimator, I implement
the unbiased version, given by Song et al. (2007) as follows:

HSICu(K,L) =
1

n(n− 3)

[
tr(KL) +

1T K11T L 1
(m− 1)(m− 2)

− 2

m− 2
1T KL1

]
,

where K̄ and L̄ are matrices K and L respectively, with diagonal entries set to 0, Āij =

(1− δij)Aij.

The choice of the linear kernel is motivated by the study of Kornblith et al. (2019), who
studied the similarity between neural network representations and showed little difference
to non-linear kernels, such as the Radial Basis Function kernel (RBF).

While Centered Kernel Alignment allows studying the similarity between two distinct
heads, it does not measure the redundancy of each head directly. To develop a metric
of head redundancy, I compute a pairwise similarity matrix S for the set of all heads i, j

within each layer. The entries of S are defined as:

Sij = CKA

(
softmax

(
XW

(i)
Q (XW

(i)
K)T

√
dk

)
, softmax

(
XW

(j)
Q (XW

(j)
K)T

√
dk

))
. (4.15)

Note that:

1. the diagonal of S is filled with 1s, indicating maximum self-similarity of each head,

2. and since CKA is symmetric, S is also symmetric.

Although computing the pairwise similarity matrix scales quadratically with the number
of heads, the above observations help decrease the total computation by more than half.

Having computed the pairwise similarity matrix for each layer of the model, I introduce
four additional scalar metrics based on S, which are logged throughout the training process
over time, and help understand the training dynamics. The first two summarise attention
within each layer:

28

• Mean redundancy per layer, Rmean, defined as a simple average of the upper
triangular S, excluding the diagonal. This metric summarises the average amount
of similarity between attention heads in each layer and is

• Max redundancy per layer, Rmax, defined as the maximum entry of the upper
triangular S, excluding the diagonal. It helps discover if there exists a head pair
with a particularly high similarity, possibly suggesting redundancy.

The second group is designed to track attention on the more granular, head-level:

• Mean head redundancy for head i, R(i)
mean defined as a simple average of the

ith row of S, excluding the diagonal entry. Higher values indicate more similarity
with other heads, and possibly lower utility of a given head.

• Max head redundancy, R
(i)
max, defined as a maximum entry of the ith row of

S, excluding the diagonal entry. This final metric directly displays the highest
similarity to any other head.

I further aggregate mean head redundancies across all heads and layers, and represent
them as head redundancy maps. This method allows for the study of the change of
attention head redundancy for the entire model throughout the training. Values close to 1
indicate relatively high redundancy of a given head. Smaller values suggest that different
heads capture more distinct patterns. Interestingly, some highly-redundant layers include
outliers – heads capturing particularly unique patterns, different from all other heads.

Figure 4.5: Head redundancy map of a trained 124M GPT model. Note that head re-
dundancy decreases with the depth of the model up until layer 7. Interestingly, all heads
in the initial layer remain relatively similar after training on Chinchilla compute-optimal
number of tokens.

29

FLOPs Count and Training Time

In addition to tracking the language modelling ability or specifics of the attention mech-
anism, I report the training wall-time and the estimated number of floating point oper-
ations (FLOPs). To estimate FLOPs, I use the methodology proposed by Chowdhery
et al. (2022), who assume the number of floating point operations per token can be split
into those coming from dense feedforward layers, and those coming from the self-attention
computation. The former can be approximated to require 6N FLOPs per token, where N

is the total number of model parameters. Computing the number of FLOPs in attention
depends on the number of heads m, their dimension dk, and the context length T , and is
given by 12mdkT for each of the L layers. Given that SMHA allows a variable number of
heads in each layer, the number of FLOPs per token is estimated as:

FLOPsactual = 6N +
L∑
l=1

12m(l)dkT,

where m(l) is the number of attention heads in the lth layer of the model.

4.3.3 Static vs Dynamic Attention Ratio

In addition to the pre-defined attention ratio in each layer, it is possible to dynamically
modify it during training. This can aid with training instability, particularly visible
in the initial stage of large model optimisation. Starting with a less expressive model
and gradually increasing its capacity may lead to more stable optimisation and better
convergence. Early experimental results consistently displayed a dependence between
redundancy metrics and the attention ratio.

To determine when to increase the attention ratio for a particular layer, I use the max
redundancy per layer Rmax as a proxy to quantify the need for more expressivity in the
model. Measuring the highest level of redundancy within a layer, this metric can be
compared against a pre-defined redundancy threshold θR. Intuitively, the redundancy
of a layer over the threshold means that attention heads are not yet diverse enough, hence
the attention ratio should remain unchanged, or possibly be lowered. If the redundancy
of a layer is lower than the threshold, the attention heads capture different patterns,
suggesting a need for more expressivity.

Rmax

≥ θR, layer is expressive enough, keep α(l) unchanged

< θR, layer needs more expressivity, double α(l)

Since Rmax is expected to change over time, the threshold can be dynamically adjusted
as well. In the early stage of training, the threshold should be lower to reflect the need
for more diversity and to limit the number of trainable parameters. With the training

30

0 0.2 0.4 0.6 0.8 1

0.3

0.5

0.7

0.9

t/Tmax

θ R
Figure 4.6: Schedule of the redundancy threshold θR throughout training. Initial and
final values of θ0 = 0.3 and θT = 0.9, respectively.

progressing, the threshold can be gradually increased to allow for more attention heads
and redundancy between them. Furthermore, to achieve initial model convergence, the
threshold should change more slowly at the start, and vary less towards the end, when
added heads may not receive enough updates to initialise. Hence, to vary the redundancy
threshold throughout training, I use an inverted cosine annealing scheduler, defined as:

θR = θ0 + (θT − θ0)×
1

2

(
1− cos

(
πt

Tmax

))
,

where t is the current training iteration, Tmax is the total number of iterations, θ0, and
θT are the initial and final threshold values, respectively. To prevent the system from
doubling the attention ratio for the same layer in two consecutive iterations, I add a per-
layer cooldown period of 10% of training iterations after modifying the layer. Additionally,
to account for the initialisation of the model, no attention heads are added in the first
10% of training. An example of the cosine threshold schedule is presented in Figure 4.6.

Dynamically increasing the number of attention heads during training results in additional
challenges. Since the added attention heads have not been trained before, their random
initialisation may introduce instability to the training and lead to divergence of the model.
To remedy this, Xia et al. (2023) suggested using the weights of the already trained
heads to initialise the new ones. On the other hand, many of the current LLM training
frameworks leverage learning rate schedulers with annealing, such as the cosine annealing
scheduler. While decreasing the learning rate stabilises training, it may lead to additional
undertraining of attention heads added later in the training process. Hence, I propose
to use a warmup-stable-decay (WSD) scheduler, which allows to maintain a constant
learning rate value for the majority of the training and decay it in the final iterations.
Note, however, that this method only partially addresses the issue of undertraining, since
parameters added in the middle of the optimisation trivially receive fewer updates. Both
the attention head initialisation and the learning rate scheduling are explored in the
ablation studies further in this dissertation.

31

4.3.4 SMHA in Heterogeneous FL

Applying Selective Multi-Head Attention to the hardware-heterogeneous FL has multiple
use-cases. It allows for a decrease in client round times by limiting the amount of com-
putation per client. Furthermore, it allows for better control of the idling in the system.
In the case when strategy 3 is used, it may help to decrease the difference in the number
of local optimisation steps between clients. Finally, depending on the implementation, it
may lead to a slight decrease in the memory usage and the amount of communicated data
when some of the attention heads are not trained on a given client.

SMHA allows training only some parts of the model, leading to a decreased training
time. Therefore, I consider a case, when each of the C clients trains only a fraction of the
available attention heads nhead but they jointly aim to optimise the complete model.
Note, however, that the evaluation of the local and aggregate models differs fundamentally
– the perplexity of the local models PPLpost is computed using only the trained attention
heads, while the aggregated model PPLpre is evaluated using all of them.

Decreasing Client Round Times

To simplify this setup, I assume that the indices of trainable heads do not change across
the model, and the selected attention head set Ih is identical between layers. Formalising
it further, for each head index i, I define a head training ratio λ(i), as the ratio between
the number of assigned clients to the total number of clients. Two distinct scenarios arise:

• Head i is trained by only one client per round (λ(i) = 1
nhead

).

• Head i is assigned to n clients per round (λ(i) = n
nhead

).

Similarly to αattn, when upper index is omitted, the value of λ applies to the entire model.

Figure 4.7: SMHA-equipped 16M-4 model trained jointly by many clients, with λ = 0.5
for all heads. Note that in this example, no single client trains the entire model, yet all
attention heads are trained twice.

From the optimisation perspective, the first case is more difficult because the head pa-
rameters are not averaged across clients. However, it also minimises the total amount of

32

computation performed by the federation. Hence, I first study how different values of λ
affect the convergence and training time in the hardware-homogeneous setting. Subse-
quently, I apply it to the hardware-heterogeneous case. In these experiments, I assume a
constant αattn.

Distributing Heads Across Clients

Assigning heads to clients can be performed either only once at the start of the training
or dynamically changed every round. When clients train more than a single head, it
may be important to dynamically change which heads are trained together. While head
assignment neither changes their λ nor affects the client compute time, it may lead to
differences in the final model performance. Therefore, in the last experiment, I explore
which of the two assignment methods results in lower perplexity. Similarly, in these
experiments I assume a constant αattn.

33

Chapter 5

Experimental Setup & Design

5.1 Experimental Setting

In all three experimental sections in this work, I pre-train language models based on
the GPT architecture. Due to the limited resources and significant energy usage of pre-
training, most of the experiments and ablation studies utilise a smaller model with 16
million parameters (16M). This model comes in two flavours: with 4 attention heads
(16M-4) and 8 attention heads (16M-8). Note that the hidden size of the model is identical
between the two, changing the dimensions of the attention key and value dk, dv only. The
final experiments demonstrating the scaling of the studied methods are performed using
a larger model with around 124 million parameters (124M). The hyperparameters of both
models are presented in Table 5.1.

Hyperparameter 16M-4 16M-8 124M

Number of layers (nlayer) 4 12
Hidden size (dmodel) 256 768
Expansion ratio 4
Number of heads (nhead) 4∗ 8∗ 12∗

Attention head key size (dk) 64 32 64
Attention head value size (dv) 64 32 64
Vocabulary size (|V|) 50368
Max sequence length (seqmax) 512 2048

Compute-optimal token count ∼ 320M ∼ 320M ∼ 2480M

Table 5.1: Model hyperparameters of both models. ∗Note that the number of attention
heads represents the maximum available number of heads. The actual number of heads
used in an iteration may be lower when SMHA with αattn < 1 is used.

I use different data for model training and evaluation between, depending on the experi-
ments section. For experiments studying the Selective Multi-Head Attention in the cen-
tralised setting, I use the open-source replication of the OpenWebText dataset (Gokaslan
and Cohen, 2019), split into a training and validation set. For the other experiments, I

34

use the IID-partitioned train and validation splits of the English subset of the C4 dataset
(Raffel et al., 2023).

5.1.1 Training Budget, Server Rounds and Local Steps

Pre-training foundational models falls into the large data regime, where the model per-
formance improves with the amount of data the model is trained on. Hence, it is essential
to establish the training budget. Conveniently, in the context of LLM training, Hoffmann
et al. (2022) experimentally showed the dependence between the optimal number of train-
ing tokens and the model size. Hence, I use the scaling laws from the Approach 1 of their
work and estimate the model size and token count following the inferred power laws pro-
portional coefficients to be α = 0.0913 and β = 1.8257. This results in the following
relationship between the optimal number of training tokens Dopt and the optimal number
of model parameters Nopt:

Dopt =
β

α
·Nopt (5.1)

Dopt = 19.9967 ·Nopt (5.2)

Dopt ≃ 20 ·Nopt. (5.3)

While the number of server rounds R is an important FL hyperparameter, I do not
focus on its optimisation in this work. The number of rounds is dependent on the ratio
between the length of a computation round and the subsequent communication period.
The latter is lower-bounded by the available bandwidth between clients. When FL is used
in the cross-silo setting to combine the computational resources and allow large model
training, it may be desired to select R such that it outperforms the wall-time of centralised
training. This is achieved when throughout the training the clients communicate BC

BFL
×

less frequently, where BC and BFL represent respectively the bandwidth between data-
parallel accelerators used in a centralised setting, and the bandwidth between the clients.

5.1.2 Implementation

All experimental and analysis code has been written in Python using PyTorch. The exper-
imental setup of the SMHA centralised study is based on the heavily modified nanoGPT
repository1, which provides very granular access to components involved in model pre-
training. This allows studying how the choice of model hyperparameters affects the model
training dynamics.

The federated learning experiments are based on the adapted Photon codebase, an ad-
vanced state-of-the-art federated learning framework that allows multi-node, multi-GPU

1https://github.com/karpathy/nanoGPT

35

https://github.com/karpathy/nanoGPT

training. The adaptations involved adding the possibility of simulating hardware-heterogeneous
clients with varying hyperparameters and tracking additional metrics. Some external li-
braries, on which Photon relies, also required modifications. Notably, the GPT implemen-
tation in the llmfoundry library2 has been adjusted and updated to include the SMHA
implementation. Furthermore, the gradient noise scale measuring callback has been mod-
ified in the composer library3. The exact listing of code repositories and changes made is
available in Appendix A.

5.2 Experiment Design

5.2.1 Hardware-heterogeneous FL

All centralised and FL experiments are simulated on a local cluster. The FL experiments
are performed using the Photon system with a modification which allows for granular
control over per-client hyperparameters. In all FL experiments, I choose the FedAvg
aggregation strategy with learning rate 1, and simulate different maximal compute ca-
pabilities of clients (further referred to as client types4) by constraining the available
hardware (8× NVIDIA A40 48GB GPUs). For each client type, I define the value of
Bmax and experimentally measure the tbmax for the studied model sizes (using complete
Multi-Head Attention). Using the obtained values, I define two different configurations
of hardware-heterogeneous client types, defined in the Table 5.2:

• Configuration 1 consisting of 2 clients: {c0 = C1, c1 = C2}

• Configuration 2 consisting of 4 clients: {c0 = C1, c1 = C2, c2 = C2, c3 = C3}

Furthermore, I consider two additional hardware homogeneous configurations:

• Configuration 3 consisting of two clients C1

• Configuration 4 consisting of four clients C1

In all federated experiments, I assume a constant number of federated rounds R = 38.

16M
Client Type Bmax tbmax

C1 32 0.165s
C2 16 0.129s
C3 8 0.112s

Table 5.2: Comparison of Bmax and tbmax across client types

2https://github.com/mosaicml/llm-foundry
3https://github.com/mosaicml/composer
4Note, that client types are marked Ci, different from client instances ci.

36

https://github.com/mosaicml/llm-foundry
https://github.com/mosaicml/composer

Learning Rate Search

To explore the influence of the learning rate value on training, I perform a grid search
over the following six values: {1e-5, 5e-5, 1e-4, 5e-4, 1e-3, 5e-3}. To better understand
how to translate the optimal learning rate values between the centralised and federated
settings, and how they relate to mini-batch sizes, I study the convergence of: a hardware-
homogeneous Configuration 4 run with a per-client mini-batch size of Beff

C
, a centralised

run with a mini-batch size of Beff , and a centralised run with a mini-batch size of Beff

C
.

In all runs, I use the 16M-4 models and perform L = 4880 optimisation steps. Given that
the optimal Beff and the optimal number of local steps L

R
is unknown at this point, I set

them arbitrarily to 128 and 128, respectively. This results in the total of S16M = 624, 640

processed samples.

GNS in the FL Setting

To investigate whether Gradient Noise Scale can be used in the federated setting, I perform
two training runs for each model size: one following a centralised setting and one using
hardware-homogeneous Configuration 4. In both cases, I ensure that the total number of
iterations steps, processed samples and hence the effective mini-batch size Beff is equal,
and set it similarly to the previous experiment (L16M = 4880, S16M = 624, 640, Beff =

128 and L124M = 4880, S124M = 1249280, Beff = 256). Following the Bnoise estimation
methodology using data parallelism, I set (Bbig = Beff , Bsmall = 16) for centralised
experiments. Since in the FL setting GNS is estimated on the per-client basis, I configure
clients with (Bbig =

Beff

C
, Bsmall = 16). The learning rates are set to the optimal values

of the previous study.

Heterogeneity Resolution Strategies

In this section, I compare the training wall-time, total idling time in the system and model
perplexity between different strategies. I assume a fixed training budget T , the number
of server rounds R, and setting the number of samples/round constant. Combining the
results from the previous experiments with the empirically measured client capabilities,
I study all hardware-heterogeneity resolution strategies, with hyperparameters computed
following the methods described in Section 4.2. To calculate the number of samples per
round, I use T

seqmax×R
, where R is set to 38. While all experiments are performed using

the 16M-4 model, I set T to half the compute-optimal number of tokens for the two-
client Configuration 1 and the full compute-optimal number of tokens for the four-client
Configuration 2. With some rounding for divisibility, for the first configuration I choose
8,192 samples per round, and for the second, 16,384, due to their divisibility. The exact
hyperparameters for all strategies are presented in Table 5.3 for Configuration 1 and Table
5.4 for Configuration 2.

Note that, depending on the available mini-batch sizes, it may be impossible to arrive at

37

the target number of samples per round (e.g. Strategy 1). In those cases, I aim to get to
the closest possible number of samples per round.

ci Client type Local steps L Mini-batch size Samples/round LR

Strategy 1 – total samples/round: 8,208
0 C1 171 32 5,472 5.0e-4
1 C2 171 16 2,736 2.5e-4

Strategy 2a – total samples/round: 8,192
0 C1 128 32 4,096 5.0e-4
1 C2 128 32 4,096 5.0e-4

Strategy 2b – total samples/round: 8,192
0 C1 128 32 4,096 5.0e-4
1 C2 256 16 4,096 2.5e-4

Strategy 3 – total samples/round: 8,192
0 C1 156 32 4,992 5.0e-4
1 C2 200 16 3,200 2.5e-4

Table 5.3: Comparison of the resolution strategies hyperparameters for the 16M-4 model
in Configuration 1.

ci Client type Local steps L Mini-batch size Samples/round lr

Strategy 1 – total samples/round: 16,344
0 C1 228 32 5,472 5.0e-4
1 C2 228 16 3,648 2.5e-4
2 C2 228 16 3,648 2.5e-4
3 C3 228 8 1,824 1.2e-4

Strategy 2a – total samples/round: 16,384
0 C1 128 32 4,096 5.0e-4
1 C2 128 32 4,096 5.0e-4
2 C2 128 32 4,096 5.0e-4
3 C3 128 32 4,096 5.0e-4

Strategy 2b – total samples/round: 16,384
0 C1 128 32 4,096 5.0e-4
1 C2 256 16 4,096 2.5e-4
2 C2 256 16 4,096 2.5e-4
3 C3 512 8 4,096 1.2e-4

Strategy 3 – total samples/round: 16,384
0 C1 193 32 6,176 5.0e-4
1 C2 248 16 3,968 2.5e-4
2 C2 248 16 3,968 2.5e-4
3 C3 284 8 2,272 1.2e-4

Table 5.4: Comparison of the resolution strategies hyperparameters for the 16M-4 model
in Configuration 2.

38

5.2.2 SMHA Analysis in the Centralised Setting

Hardware-heterogeneous federated learning has significantly more hyperparameters and
contributes more confounding factors to experiments. Hence, before employing SMHA
in that setting, I begin by extensively studying SMHA in a centralised scenario. The
analysis is performed to understand how varying the number of attention heads affects
the training dynamics.

The training hyperparameters for both the 16M-8 and 124M models are shown in Table
5.5. No dropout is used, and the warmup-stable-decay (WSD) scheduler is employed for
training extensibility.

Training Hyperparameter 16M 124M

Learning rate (η) 1e-3 6e-4
Micro-batch size (B) 32 16
Gradient accumulation steps 5 20
Mini-batch size (B) 160 320
Number of training steps 4,000 10,000
Warmup steps 400 500
Decay steps 800 2,000
Optimizer AdamW
Learning rate schedule Warmup-Stable-Decay (WSD)
Fraction of compute optimal budget 1.02 1.32

Table 5.5: Training hyperparameters for 16M and 124M GPT models in SMHA experi-
ments.

Experiments

I start by studying how head redundancy metrics and similarity matrices change through-
out training in a unmodified Multi-Head Attention model. Following this study, I train a
set of models with a set of lower static attention head ratios αattn (Table 5.6), comparing
their perplexity and attention-related metrics with the original models. In each training
run, the number of attention heads is kept equal in every layer and not modified during
training.

αattn 16M 124M

αattn = 0.25 2/8 4/12
αattn = 0.5 4/8 6/12
αattn = 0.75 6/8 8/12
αattn = 1 8/8 12/12

Table 5.6: Attention head ratios and the corresponding head counts.

Furthermore, I investigate the effect of dynamically modifying the attention head ratio
during training. To do so, I initialise a model with the αattn = 0.25 and grow each layer

39

individually, only when its Rmax is lower than the redundancy threshold θR, and outside
of the cooldown period. The threshold is scheduled using the inverse cosine scheduler,
with θ0 = 0.4, θT = 0.9 for 16M-8, θ0 = 0.3, θT = 0.9 for 124M.

This study involves two additional ablation experiments. In the first one, I investigate
the influence of the WSD scheduler on the dynamic changes of αattn. I aim to verify the
hypothesis, whether when new attention heads are added to the model, the learning rate
needs to be kept relatively high to prevent them from under-training. Hence, I compare
the WSD scheduler to a Cosine Annealing scheduler, applied to the dynamically changed
αattn. The last study aims to verify whether the newly added heads can be initialised
from the random state (Gaussian distribution initialisation), or should be initialised by
copying the parameters of the already trained heads, as suggested by (Xia et al., 2023).

5.2.3 SMHA in Heterogeneous FL

The experiments performed in this section make use of the same configurations and client
types as defined in Section 5.2.1. In the first experiment, I compare the following two
Configuration 4 training runs:

• An unmodified 16M-4 model with αattn = 1 and λ = 1.

• A 16M-4 model with αattn = 0.25 and λ = 0.25, with head i assigned to a distinct
client i, (ci : {i}).

In the follow-up experiment, I further compare two Configuration 4 runs of a 16M-4
model, where every client’s αattn is set to 0.5 and λ = 0.5. Originally, I assign head ids
to clients in the following way: (c0 : {0, 1}, c1 : {2, 3}, c2 : {0, 1}, c3 : {2, 3}). Then, two
cases are compared to check whether it is necessary to change which heads are trained
together throughout the training:

• In the first case, head assignments are static during training.

• In the second case, I modify the head assignments every round, changing between
all possible head pairings, ensuring every head is trained the same number of times:

– (c0 : {0, 1}, c1 : {2, 3}, c2 : {0, 2}, c3 : {1, 3}),

– (c0 : {0, 3}, c1 : {1, 2}, c2 : {0, 1}, c3 : {2, 3}),

– (c0 : {0, 2}, c1 : {1, 3}, c2 : {0, 3}, c3 : {1, 2}).

Finally, I apply SMHA to Configuration 2 and strategy 3., where client types are associ-
ated with the following αattn values: C1 : αattn = 1, C2 : αattn = 0.5, C3 : αattn = 0.25.
Furthermore, I implement a dynamic head assignment scheme. Note that, in this arrange-
ment, the system in total can train 9 heads per round, where each head is trained exactly
twice on the first three clients c0, c1, c2 (λ = 0.5). However, the fourth client trains one
of the heads additionally, leading to (λ ≥ 0.5).

40

Chapter 6

Results

6.1 Hardware-Heterogeneous FL

6.1.1 Learning Rate

Centralised Learning Rate Cannot be Easily Translated Into FL Setting.

To understand how to choose learning rate for federated setting with effective mini-batch
size Beff and per-client mini-batch size Beff

C
, I studied how model perplexity compares

to centralised settings with effective batch size equal to either Beff or Beff

C
. As shown in

Figure 6.1, the federated run does not follow either of the centralised settings. Interest-
ingly, it is possible to distinguish two regimes: with lower learning rates (1e-5, 5e-5), the
federation achieves comparable results to the centralised case with the equivalent effec-
tive mini-batch size. However, when the learning rate grows (1e-4), the final validation
perplexity gets closer to the centralised case with the batch size equivalent to the batch
size of federate clients. Finally, with significantly larger learning rates (5e-4, 1e-3, 5e-3),
the centralised approaches outperform the federation.

41

10 20 30

6.8

7

7.2

7.4

Round

V
al

.
P

P
L

1e-5

10 20 30

6

6.2

6.4

6.6

6.8

Round

5e-5

10 20 30

6

6.5

Round

1e-4

10 20 30
4.5

5

5.5

6

Round

V
al

.
P

P
L

5e-4

10 20 30

5

6

Round

1e-3

10 20 30

4.5

5

5.5

6

Round

5e-3

Centralised Beff = 32 Centralised Beff = 128 FL Beff = 128

Figure 6.1: Learning rate sweep and validation perplexities between centralised and fed-
erated runs. Note that the convergence rate of the federated setting is progressively
diverging from centralised baselines with growing learning rate.

This behaviour could suggest that federated averaging leads to degradation of pseudo gra-
dient contributions when individual clients explore the loss landscape more aggressively.
One way to explore this idea further is to study the dynamics of the gradient noise scale
Bsimple, which may indicate whether the issue lies in the size of a mini-batch. Since it is
not possible to reliably predict learning rate for hardware-heterogeneous clients based on
the centralised setting, in further studies I use the empirically obtained optimum in the
FL case (1e-4), and linearly scale it with mini-batch size.

6.1.2 Gradient Noise Scale in Federated Learning

Gradient Noise Scale of Federated Clients Does Not Follow Centralised

Dynamics. Understanding the relation between GNS in centralised and federated set-
tings is useful, because if they are similar, then the already developed theory for the
former setting could be applied to tune mini-batch size in the hardware-heterogeneous
FL. However, as shown in Figure 6.2, Bsimple behaves differently in both cases.

I start this analysis by focusing on the central phase of the learning rate schedule (marked
with dashed lines). Regular aggregation and averaging of weights in federated learning
seem to be inhibiting the growth of Bsimple experienced in the centralised study. As
explained by McCandlish et al. (2018), the growth is expected and comes from the pro-
gressively decreasing gradient direction, minimising the loss, and more background noise.

42

No similar pattern in any of the FL runs has been observed, which may suggest that pa-
rameter aggregation acts as a “reset" point, providing clients with an optimisation task,
which has a more distinct gradient direction, minimising the loss. To explore this idea
further, I zoom in on the gradient noise scale curves in Figure 6.3, which shows a slight
oscillatory pattern in the value of Bsimple. The period of the pattern coincides with pa-
rameter aggregation points, supporting the reasoning about its source. Furthermore, after
each synchronisation point (every 128 steps), Bsimple drops and starts increasing again.
Note that while it does not drop immediately in plots shown, it is likely because of the
applied EMA averaging, as explained in the methodology of estimating Bnoise.

0 1,000 2,000 3,000 4,000 5,000

0

50

100

150

Step

B s
im

p
le

16M-4

Centralised

FL c0

FL c1

FL c2

FL c3

0 1,000 2,000 3,000 4,000 5,000

0

50

100

150

Step

B s
im

p
le

124M

Centralised

FL c0

FL c1

FL c2

FL c3

Figure 6.2: Gradient Noise Scale estimation Bsimple comparison between centralised and
hardware-homogeneous FL settings. Models trained with Chinchilla compute-optimal
training budgets.

200 400 600 800 1,000 1,200

10

20

Step

B
si
m
p
le

16M-4

Centralised FL c0

FL c1 FL c2

FL c3

800 1,000 1,200 1,400 1,600 1,800

10

15

20

25

Step

B
si
m
p
le

124M

Centralised

FL c0

FL c1

FL c2

FL c3

Figure 6.3: Zoomed-in Bsimple curves at the divergence region.

On the other hand, there is a clear divergence point between Bsimple of the centralised
and federated run. For both studied model sizes, it occurs early, after a similar number
of rounds. Figure 6.3 shows those divergence regions, indicating that in the case of the
smaller model, it occurs around step 800 (after the 6th round), and for the larger model,
the divergence takes place around step 900 (after the 7th round). While the location of
the divergence could be dictated by the changing value of the learning rate, the change
of the scheduler phase from warm-up to stable occurs significantly earlier, at step 488.

43

Federated Learning May Have Smaller Compute-Optimal Mini-Batch Size.

Measuring the Bsimple is a method used in estimating the compute-optimal mini-batch
size Bcrit. Hence, if the reasoning about the per-round aggregation as a “reset" for local
optimisation is correct, then it suggests that federated learning with FedAvg aggregation
strategy may have a lower value of Bcrit, resulting in either being a more computationally
efficient method or less scalable. However, verifying this hypothesis requires further ex-
periments, especially studying how the gradient noise scale reacts to varying the number
of local optimisation steps and changing the federated aggregation strategy.

Warmup-Stable-Decay Scheduler has three Bsimple Regimes. The observed
values of Bsimple fall into three regimes, which are marked with the vertical dashed lines
and indicate the phases of the learning rate scheduler. Note that in the original study by
McCandlish et al. (2018), the authors do not consider the effects of dynamically varying
learning rate during training. This adds complexity to estimating Bcrit because the value
of Bsimple itself depends on the chosen learning rate. Hence, it is reasonable to split
estimation of the Bcrit into the three learning rate scheduling phases, as shown in Table
6.1. Since the stable phase is the longest, I use the mean value of Bsimple from this period
as the compute-optimal mini-batch size in further experiments. Furthermore, I use the
results from the centralised runs with the expectation, that the Beff in the centralised
case is equivalent to the B of each client in the federated scenario. Finally, I set Bcrit = 32

per client for 16M-4 and Bcrit = 64 per client for 124M.

Case Total Warmup Stable Decay

16M-4

Centralised 74.3 6.2 39.4 230.3
FL client avg 8.30 3.6 6.7 16.2

125M

Centralised 106.8 1.1 47.0 368.9
FL client avg 14.4 1.0 7.8 44.9

Table 6.1: Measured mean values of Bsimple for different scheduler phases.

6.1.3 Heterogeneity Resolution Strategy

Heterogeneous-Hardware Resolution Strategy 3 Decreases the Total

Idling Time Significantly. Looking at the results of the four-client configuration
2, different strategies show vastly different training wall-times and idling ratios. Due to
the inevitable idling of either the slower clients (strategy 1) or the faster clients (strategies
2a and 2b), the training wall-time of the federation is adequately extended. The differ-
ences in round processing times for the participating clients can be seen in Figure 6.4.
These differences result in an average client inactivity ratio between 20% and 38%. In a
practical FL deployment, client owners may decide to run external workloads during the

44

idle time, yet it adds complexity to maintaining client state and results in significantly
longer federation training time. The same pattern repeats in the case of the two-client
configuration 2, with smaller idling ratios due to the smaller number of clients.

10 20 30

40

60

Round

T
im

e
[s

]

Strategy 1

10 20 30

40

60

80

Round

Strategy 2a

10 20 30

50

100

Round

Strategy 2b

10 20 30

40

50

60

70

Round

Strategy 3

c0 (C1) c1 (C2) c2 (C2) c3 (C3)

Figure 6.4: Round processing times for each of the four clients, across different strategies.
Note that the growing trend results from a bug in the implementation of the original
library, yet scales the per-client times identically, hence does not affect the comparison.

Empirically measuring throughput of each client and adjusting the number of optimisation
steps, as suggested by strategy 3, leads to a significant reduction of the idle time, not far
from the hardware-homogeneous case (2.62% vs 1.64% in configuration 2). In the strategy
3 experiment, I use a constant tbmax across all rounds, however, when client throughput
is expected to change, tbmax and client optimisation step counts may be dynamically
adjusted.

10 15 20 25 30 35

5.5

6

Round

V
al

id
at

io
n

lo
ss

Aggregate Model Validation Loss

homo.

1

2a

2b

3

Figure 6.5: Validation loss for each of the strategies considered. Both strategies 2b and 3
achieve better results than the hardware-homogeneous run with high-performance clients.
This indicates that an increased number of steps leads to better convergence.

Strategy 3 Achieves Lower Perplexity Than Homogeneous Case with High-

Performance Clients. Limiting the idle time through local step adjustments is suc-
cessful only if it does not lead to a significant decrease in model performance. Table 6.2
shows that most of the heterogeneous runs result in lower final validation perplexity than
the homogeneous-hardware baselines. Similarly, Figure 6.5 shows that these strategies
are consistently better throughout the duration of the training. This means that with the

45

fixed training budget and the number of rounds, less capable clients contribute to the ag-
gregated model more than high-performing ones, by taking more optimisation steps, even
with a smaller batch size and adequately adjusted learning rate. Crucially, in the case
of the four-client configuration 2, strategy 3 achieves the lowest perplexity, significantly
outperforming the homogeneous-hardware run.

Strategy Training Wall-Time Avg. Idling Ratio/client PPL

1 2,078s 20.11% 5.454
2a 2,344s 26.85% 5.290
2b 3,376s 37.10% 5.238
3 1,876s 2.62% 5.185

homo. 1,318s 1.64% 5.315

Table 6.2: Training time, average idling ratio per client and final model perplexity for the
four-client hardware-heterogeneous configuration.

Notably, configuration 2 is equipped with hardware allowing almost only half (56%) of
the effective mini-batch size of the four-client homogeneous configuration. Nevertheless,
using strategy 3 required only 42% more time to complete. This promising result may
indicate that there is an optimisation benefit to aggregating parameters of models trained
with different numbers of steps. On the other hand, it may suggest that learning rates
across configurations were not configured in the optimal way, giving some of the clients an
unfair advantage. Regardless, both possibilities indicate plausible gains of heterogeneous-
hardware FL.

In Strategy 1, Top-Performing Client Dominates the Federation. The
amount of contribution each client brings to the aggregated model changes throughout
the duration of training and depends on the chosen heterogeneity-resolution strategy. The
measured client gap values for each client c are presented in Figure 6.6. The client gap
ratio below 1 of the top-performing client c0 in strategy 1, indicates that its contribu-
tions are better than the aggregated model. This indicates that when clients perform the
same number of optimisation steps, yet with different mini-batch sizes and linearly scaled
learning rate values, the most capable of them dominates the federation. This may also
imply that the federation slows down the optimal convergence, which would be achieved
if client c0 performed optimisation on its own. Furthermore, this reasoning has support
in the significantly lower perplexity of strategy 1 and the corresponding shape of the loss
curve in Figure 6.5.

46

10 20 30
0.95

1

1.05

1.1

Round

G
(i
)

c

Strategy 1

10 20 30

1

1.02

1.04

Round

Strategy 2a

10 20 30

1

1.02

1.04

Round

G
(i
)

c

Strategy 2b

10 20 30

1

1.02

1.04

Round

Strategy 3

c0 (C1) c1 (C2) c2 (C2) c3 (C3) G
(i)
c = 1

Figure 6.6: Client gap ratio Gi
c throughout training in each of the strategy. Note that the

contribution of each of the clients varies depending on the choice of strategy. Similar Gi
c

values indicate similar contribution of the clients to the aggregated model.

Dynamics of G
(i)
c Explain the Behaviour of Strategies. From the optimisation

perspective, strategy 2a is equivalent to a hardware-homogeneous setting due to gradient
accumulation, which simulates larger mini-batch sizes. This is what I empirically confirm
by comparing almost identical loss curve values and very similar values of G(i)

c between the
clients. On the other hand, strategy 2b suggests that weaker clients performing smaller
optimisation steps but in a greater number result in better, more similar models to the
aggregated one. The growing discrepancy between the client gap ratios supports this
hypothesis. The dynamics of G

(i)
c in strategy 3, suggest an interesting, unintentional

feature. Client contributions converging to the same value indicate that the adjusted
number of local optimisation steps causes the models to become progressively similar in
the sense of validation perplexity. Finally, note that different values of the client gap ratio
between clients inhibit the immediate perplexity decay effect of the WSD learning rate
scheduler. This may be a significant limitation of strategies 1 and 2b, explaining their
worse performance.

47

6.2 Selective Multi-Head Attention

In this section, I start by developing an understanding of how the SMHA mechanism
changes the training dynamics, and how it could be further applied to the federated
scenario. Finally, I evaluate its performance in the hardware-heterogeneous case.

6.2.1 Centralised Study

1,000 2,000 3,000 4,000

4.5

5

Step

V
al

id
at

io
n

Lo
ss

16M-8

αattn = 0.25 (2/8)

αattn = 0.5 (4/8)

αattn = 0.75 (6/8)

αattn = 1 (8/8)

0.2 0.4 0.6 0.8 1

·104

3.4

3.6

3.8

4

4.2

Step
V
al

id
at

io
n

Lo
ss

124M

αattn = 0.25 (3/12)

αattn = 0.5 (6/12)

αattn = 1 (12/12)

Figure 6.7: Validation loss comparison for 16M and 124M models with varying attention
ratios. Excluding the first 20% of training for better readability. Results averaged over 3
seed runs.

Training Only Some Attention Heads Significantly Decreases Training

Wall-Time but Only Marginally Worsens Perplexity. I start this analysis by
comparing the performance of models trained with different values of αattn < 1, static
throughout the duration of the training. As shown in Figure 6.7, training with only some
of the available attention heads still leads to model convergence, and only slightly affects
the final validation loss. Table 6.3 and Figure 6.8 show that while training with only a
quarter of available heads worsens the final perplexity by about 2% for both model sizes,
it results in almost 26% and 24% wall-time reduction for the smaller and larger models,
respectively. A similar situation occurs for αattn = 0.5.

0 1,000 2,000 3,000 4,000

0

1

2

3

Step

%
C

ha
ng

e

16M-8

αattn = 0.25 αattn = 0.5

αattn = 0.75 Dynamic αattn

0 0.2 0.4 0.6 0.8 1

·104

0

2

4

Step

%
C

ha
ng

e

124M

αattn = 0.25 αattn = 0.5

Dynamic αattn

Figure 6.8: Change in the validation perplexity throughout model training. Results av-
eraged over 3 seed runs apart from Dynamic αattn.

48

Training Time (±std) % of αattn = 1 Training FLOPs/it ×109

αattn 16M-8 124M 16M-8 124M 16M-8 124M

0.25 1,145±0.20s 10,892s 74.16% 78.11% 0.098 0.802
0.5 1,190±0.62s 11,801s 77.07% 84.63% 0.100 0.859
0.75 1,283±9.04s N/A 83.11% – 0.101 –
1 1,544±7.68s 13,945s 100% 100% 0.103 0.973
Dynamic 1,187s 11,968s 76.89% 85.82% – –

Table 6.3: Influence of the attention head ratio αattn on the training time and FLOPs per
iteration. Results averaged over 3 seed runs apart from Dynamic αattn.

Figure 6.8 shows the relative differences between the validation curves of runs with frac-
tional αattn and the full model. Interestingly, for both model sizes, the change in perplex-
ity for static αattn seems to be linearly scaled with the value of αattn. This phenomenon
means that the resulting lower perplexity comes from the insufficient expressive power
of the models with limited attention mechanisms. Hence, it is reasonable to consider
dynamically increasing the number of trainable heads. This would allow for a gradual in-
crease in the capacity of the model, yet saving on training wall-time in the initial training
phase. Finally, when applying SMHA to heterogeneous-hardware FL, I expect a decrease
in wall-time, combined with a slightly worse validation perplexity.

Layer Attention Head Redundancy Decreases With Transformer Depth.

Exploring how head redundancy heatmaps change over time hints that attention heads in
different layers of the transformer learn to capture distinct patterns at different points dur-
ing training. Figure 6.9 presents heatmaps from different stages of training a 124M model
with all attention heads (iterations 400, 3,000 and 7,600 out of 10,000). In the beginning,
most of the heads produce similar attention maps, hence, mean head redundancies are
high. While the training progresses, all heads become more redundant, learning distinct
patterns. Note, however, that in general, deeper layers of the transformer (7-11) have
heads with lower redundancy scores than the early ones (0-3). Furthermore, heads in the
first layer (0) seem to be capturing very similar patterns throughout the entirety of the
training, only very gradually diverging towards the end.

Figure 6.9: Head Redundancy Heatmaps for full-model training of a 124M model. Note
the progressive reduction in overall redundancy apart from the first layer of the model.

49

0 1,000 2,000 3,000 4,000

0.2

0.4

0.6

0.8

1

1.2

Step

R
m
ea

n
Layer 0 Layer 1
Layer 2 Layer 3

(a) αattn = 0.25

0 1,000 2,000 3,000 4,000

0.4

0.6

0.8

1

Step

R
m
ea

n

Layer 0 Layer 1
Layer 2 Layer 3

(b) αattn = 0.5

0 1,000 2,000 3,000 4,000

0.4

0.6

0.8

1

Step

R
m
ea

n

Layer 0 Layer 1
Layer 2 Layer 3

(c) αattn = 0.75

0 1,000 2,000 3,000 4,000

0.4

0.6

0.8

1

Step

R
m
ea

n

Layer 0 Layer 1
Layer 2 Layer 3

(d) αattn = 1

Figure 6.10: Mean per-layer redundancy Rmean indicating that deeper layers learn more
distinct patterns than the early ones. Results averaged over 3 seed runs.

Each layer of the model can be summarised using the layer mean redundancy metric Rmean.
In Figures 6.10, I show how this metric changes over time for 16M-8 model training runs
with various αattn. Note that for all studied attention head ratios, the early layers (0,
1) display larger values of Rmean, and the deeper layers (2, 3) have generally less similar
heads. Such a difference between layers can be explained assuming the common consensus
that the earlier transformer layers capture the syntactic patterns, while the latter focus
on the semantics, which are more numerous and distinct. Finally, it is worth noting that
decreasing αattn does not necessarily lead to lower head redundancy. This indicates that
equipping models with a smaller number of attention heads does not necessarily encourage
learning more distinct representations.

Layer Attention Head Redundancy Values Converge to Constant Levels.

Results in Figures 6.10 show that after the brief initialisation period, the per-layer values
of Rmean remain roughly constant. This suggests the existence of only a finite number of
distinct patterns in the training data, which the heads are learning. It can also be observed

50

for the larger, 124M parameter model on the left in Figure 6.11, where all layers converge
to some constant values. Notably, the first layer of the transformer displays particularly
high mean redundancy, shown as the top light-blue curve close to 1. This confirms the
observation of the corresponding head redundancy heatmaps in Figure 6.9, where heads
in the first layer were very redundant. Furthermore, studying the maximum redundancy
Rmax shows a similar convergence pattern. This means that in every layer there exists
a pair of heads, which capture relatively similar patterns (Rmax > 0.8 for most of the
layers). Since the occurrence of the convergence of Rmean and Rmax is invariant of αattn,
it suggests that reducing the number of trained heads does not fundamentally change the
properties of the models, only resulting in adequately scaled value of the validation loss.

However, the observed convergence of the redundancy metrics prompts their further study,
since there is no evidence on how their values actually relate to the model performance.
The model performance likely scales non-linearly with the values of redundancy, and
hence, the change in model behaviour should be studied for an entire spectrum of them.

0 0.2 0.4 0.6 0.8 1

·104

0.2

0.4

0.6

0.8

1

Step

R
m
ea

n

Rmean

0 0.2 0.4 0.6 0.8 1

·104

0.2

0.4

0.6

0.8

1

Step

R
m
a
x

Rmax

Figure 6.11: Rmean and Rmax plots for a full-model training of a 124M model. Note, that
every layers converges to some constant Rmean, while in every layer there exist a head
with relatively high redundancy, measured through Rmax.

Dynamically Adding Attention Heads Does Not Outperform Static αattn.

Implementing the idea to gradually increase the pattern-capturing capacity of the model
does not necessarily lead to better results, compared with a static αattn. Note, that in
the case of 16M-8, the perplexity of the dynamic run is similar a static αattn = 0.5, with
a marginally shorter training wall-time (left plot in Figure 6.8). However, the difference
in validation perplexity compared to the baseline for the 16M-8 model is decreasing in
the dynamic approach. Assuming the prior reasoning about the validation loss differences
is correct, this suggests that dynamically increasing the number of trained heads indeed
increases model complexity, allowing it to capture more patterns. On the other hand, this
does not hold in the case of the larger model, where the relative change in perplexity to
the baseline oscillates. Furthermore, the final validation loss is significantly worse than
any studied cases with static αattn.

51

1,000 2,000 3,000 4,000

4.5

5

5.5

Step

V
al

id
at

io
n

Lo
ss

16M-8

Static αattn = 1
Dynamic αattn

0.2 0.4 0.6 0.8 1

·104

3.2

3.4

3.6

3.8

Step

V
al

id
at

io
n

Lo
ss

124M

Static αattn = 1
Dynamic αattn

Figure 6.12: Influence of the dynamically varied αattn on the validation loss dynamics.
Note the spikes caused by head addition.

The issue with non-decreasing validation loss in the case of the larger model may be related
to the observed spikes in the loss, likely caused by the addition of new untrained attention
heads (Figure 6.12). In the case of the smaller model, the addition of heads occurred only
a few times. This can be easily observed as immediate changes in the value of Rmax for
the layer which is resized (Figure 6.13). Note that these points coincide with the spikes in
validation loss, supporting this hypothesis. Since the larger model involved significantly
more changes in its architecture (Figure 6.14), it is likely that they significantly disturbed
the validation loss, preventing better convergence. I conclude that the worse performance
of the larger model could come from a poorly tuned scheduler for θR.

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000

0.4

0.6

0.8

1

α
(3)
attn = 0.5

α
(2)
attn = 0.5∗

α
(0)
attn = 0.5

α
(2)
attn = 1

α
(3)
attn = 1

Step

R
m
a
x

Rmax of Model Layers with θR

Layer 0
Layer 1
Layer 2
Layer 3

θR

Figure 6.13: Dynamically increasing the attention ratio αattn in each layer based on their
corresponding Rmax values and the threshold θR for the 16-8M model. Note the immediate
increase, followed by a gradual decrease in redundancy after head addition (marked by
arrows), caused by the initialisation. ∗While the Rmax for layer 2 crossed the threshold
earlier at iteration 100, it was in the 10% warmup period (400 iterations). Hence, the
change of α(2)

attn is delayed.

Note that increasing the number of heads per layer should increase the attention head

52

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·104

0

0.2

0.4

0.6

0.8

1

Step

R
m
a
x

Rmax of Model Layers with θR

Layer 0 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5
Layer 6 Layer 7 Layer 8 Layer 9 Layer 10 Layer 11

θR

Figure 6.14: Dynamically increasing the attention ratio αattn in each layer based on their
corresponding Rmax values and the threshold θR for the 124M model. The Rmax of some
layers decreases past the threshold in the second half of the training due to the maximum
αattn reached.

redundancy within it, since the added untrained heads produce similar representations.
This behaviour is observed for both models in Figures 6.13 and 6.14. However, while the
resulting large value of Rmax decreases in some layers in the following optimisation steps,
other layers exhibit the opposite behaviour, increasing their value. This is surprising and
needs to be further understood.

Figure 6.15: Head Redundancy Heatmaps for dynamically varied αattn, individually for
each layer of a 124M model. Note, that if a layer uses less heads than other layers, their
entries are right-padded with 0s.

Dynamically adding attention heads changes the values observed in head redundancy
heatmaps. Figure 6.15 shows that initialising the training with a significantly more con-
strained model leads to a faster decrease in head redundancy in every layer. While the
shallow-deep split between the layers still holds, the head redundancy values in the early
layers are much lower than when the full model is trained. This could be leveraged in
model training as a faster initialisation method, followed by full or nearly full model

53

training. Finally, note how the iteration time increases when the new attention heads
are added to the model (Figure 6.16). This displays that SMHA indeed shortens training
time, and the per-iteration times can be granularly adjusted.

0 1,000 2,000 3,000 4,000

300

350

400

450

Step

It
er

at
io

n
ti

m
e

[m
s]

16M-8

αattn = 1
Dynamic αattn

0 0.2 0.4 0.6 0.8 1

·104

1,100

1,200

1,300

1,400

Step
It

er
at

io
n

ti
m

e
[m

s]

124M

αattn = 1
Dynamic αattn

Figure 6.16: Difference in iteration times with dynamically varied αattn. Note the pro-
gressive increase in iteration time due to more computation.

SMHA is Invariant to Scheduler Type but Warmup-Stable-Decay Achieves

Lower Loss in General. Given a growing use of warmup-stable-decay schedulers in a
single-epoch training regime, I studied whether the choice of the scheduler influences the
performance of SMHA. It is particularly important from the perspective of dynamically
changing αattn, since annealing the learning rate may result in undertrained heads. Figure
B.2 in Appendix B suggests that the WSD scheduler leads to a better performance.
However, I compare it against the full model run, which displays that the WSD scheduler
results in lower loss values in general (Figure B.1 in Appendix B). This means that either
scheduler can be safely used with SMHA.

Chosen Scheme for Initialising Added Heads Does not Influence Model

Performance. Comparing the initialisation methods shows that initialising new heads
with the values of the already trained ones produces slightly larger loss spikes but the
validation loss curves do not diverge, in general (Figure B.3 in Appendix B). Hence, to
avoid copying time, I decide to initialise heads using a random initialisation scheme.

54

6.2.2 SMHA in Hardware-Heterogeneous FL

10 15 20 25 30 35

6

8

Round

V
al

id
at

io
n

lo
ss

Aggregate Model Validation Loss

homo.

homo. single head

homo. two heads (same)

homo. two heads (changing)

(a) In all studied cases, lack of at least one
client with αattn = 1, leads to divergence of
the aggregate model.

10 15 20 25 30 35

5.5

6

Round

V
al

id
at

io
n

lo
ss

Aggregate Model Validation Loss

strategy 1, λ = 1

strategy 1, λ < 1

strategy 3, λ = 1

strategy 3, λ < 1

(b) Training with fractional λ results in similar
perplexity when combined with strategy 1 but
loss divergences compared to strategy 3.

Figure 6.17: Per-round validation perplexity of the aggregate 16M-4 model with SMHA.

Training Each Attention Head Exactly Once Results in Divergence. I
start the evaluation of SMHA in the federated setting by exploring the extreme case,
where each attention head is trained only once by a corresponding client (1:1 mapping,
λ = 0.25, αattn = 0.25). Training in a homogeneous-hardware setting significantly de-
creases training wall-time (84.67% of the full model training), as shown in Table 6.4.
Nevertheless, averaging over only partially trained model parameters leads to divergence
of the aggregated model (Figure 6.17a). On the other hand, local optimisation on the
clients proceeds successfully, still minimising loss in every round. This can be observed
by interpreting the decreasing client gap ratio below 1 (left diagram in Figure 6.18). Such
a result suggests that the chosen aggregation strategy – FedAvg – may not be optimal
in this setting. Hence, a different aggregation strategy may still exist, resulting in the
convergence of the joint model.

10 20 30

0.7

0.8

0.9

1

Step

G
(i
)

c

Homo. αattn = 0.25, λ = 0.25
(sing head per client)

10 20 30

0.7

0.8

0.9

1

Step

Homo. αattn = 0.5, λ = 0.5
(same heads)

10 20 30

0.7

0.8

0.9

1

Step

Homo. αattn = 0.5, λ = 0.5
(changing heads)

c0 (C1) c1 (C2) c2 (C2) c3 (C3) G
(i)
c = 1

Figure 6.18: Client gap ratio G
(i)
c for experiments with all clients αattn < 1.

55

Modifying Which Heads Are Trained Together Every Round Improves

Model Performance. Doubling λ, and training two heads per client (αattn = 0.5)
does not mitigate the issue of divergence, and leads to a similarly bad perplexity score
(Figure 6.17a). However, there is a notable difference in validation loss curves between
when clients always train the same pre-defined heads, and when the head assignments
are changing every round (as described in Section 5.2.3). This means that when clients
implement SMHA with αattn < 1, they should exchange the head assignments and train
different components together. Finally, both homogeneous-hardware models trained with
two heads per client complete in around 87% of the full model training wall-time, as
expected from the centralised study.

10 20 30

1

1.05

1.1

1.15

Round

G
(i
)

c

Hetero. Strategy 1, λ < 1

10 20 30

1

1.05

Round

Hetero. Strategy 3, λ < 1

c0 (C1) c1 (C2) c2 (C2) c3 (C3) G
(i)
c = 1

Figure 6.19: Client gap ratio G
(i)
c for experiments applying SMHA to hardware-

heterogeneity resolution strategies.

Convergence is Achieved When At Least One Client Trains All Heads.

Modifying the federation, so that at least one client trains a complete model, leads to
convergence (hetero. strategy 1 and hetero strategy 3, as described in Section 5.2.3).
Note, however, that this may be a result of one client dominating the joint optimisation.
This can be further supported by the differences in client gap ratio for strategy 1, as shown
on the left in Figure 6.19. The client training the full model (c0) consistently produces
a better model than the aggregation of all clients, shown as G

(i)
0 < 1 for all rounds i.

Furthermore, the weakest client c3 training just a single head, progressively diverges from
the averaged model. On the other hand, strategy 3 results in more similar client gap
ratios across, but still may have an issue of a dominating client.

Strategy 3 with SMHA Shortens Heterogeneous-Hardware Training Time

But Increases Perplexity. Applying SMHA to hardware-heterogeneous configura-
tion 2 with strategy 3, requires updating the tbmax values for each client. The per-client
mini-batch processing times and the corresponding αattn are presented in Table 6.5. The
decrease in mini-batch processing times achieved by applying SMHA allows for equalising
more the share of samples, each client processes per round (Table 6.6. This translates into
a 5% decrease in total training wall-time between strategy 3 with and without SMHA.

56

Strategy Wall-Time (% baseline) PPL (% baseline)

homo. αattn = 0.25, λ = 0.25 1,116s (84.67%) 7.9785 (150.41%)

homo. αattn = 0.5, λ = 0.5 1,150s (87.25%) 8.0779 (152.29%)(same heads)
homo. αattn = 0.5, λ = 0.5 1,148s (87.10%) 7.4250 (139.98%)(changing heads)

strategy 1, λ < 1 2,097s (100.96%) 5.364 (98.98%)
strategy 3, λ < 1 1,798s (95.85%) 5.515 (106.74%)

Table 6.4: Wall-time and perplexity changes over baselines. Note the divergence of runs
where no client trains all attention heads.

Interestingly, this number is close to the maximum theoretical decrease (6.03%), which
can be estimated by computing the average per-client decrease of tbmax per iteration.
Nevertheless, the SMHA-equipped configuration 2 with strategy 3 achieves 6.74% worse
perplexity than the baseline without SMHA, with progressively diverging validation loss
curves (Figure 6.17b). This result indicates that while shortening the wall-time, SMHA
slows down the convergence of the aggregate model. While this study is limited in the
number of considered client configurations and considers only a few client head assign-
ments, larger federations may benefit from SMHA both in terms of wall-time and perplex-
ity. Furthermore, a different aggregation strategy that is better suited for SMHA could
result in better model convergence.

16M
Client Type αattn Bmax tbmax Change in tbmax compared to αattn = 1

C1 1 32 0.165s 0%
C2 0.5 16 0.120s -7.0%
C3 0.25 8 0.100s -10.1%

Table 6.5: Applying SMHA to the hardware-heterogeneous four-client configuration de-
creases the mini-batch processing times.

ci Client type Local steps L % round samples with and without SMHA

Strategy 3 – total samples/round: 16,384
0 C1 184 37.70% → 35.94%
1 C2 253 24.22% → 24.71%
2 C2 252 24.22% → 24.61%
3 C3 302 13.87% → 14.75%

Table 6.6: Revised local step values for the 16M-4 model with SMHA.

57

Chapter 7

Conclusions and Future Work

The key findings of this dissertation can be grouped into four main areas. First, I showed
that standard learning-rate tuning in a centralised setting does not carry over straight-
forwardly to federated averaging: across a wide grid of learning-rate values, the federated
runs diverged from both small- and large-batch centralised baselines early in training,
with final validation perplexities that tracked neither regime. Furthermore, synchroni-
sation introduced by FedAvg fundamentally alters gradient-noise dynamics compared to
centralised training. Instead of the steady noise-scale growth seen in centralised optimi-
sation, federated clients’ noise scale oscillates around a much lower constant value. This
area is particularly exciting to study further since the “resets" of gradient noise after each
round may enable the use of smaller local mini-batch sizes or indicate the need for a better
compute-optimal mini-batch size criterion.

Second, in the presence of hardware heterogeneity, I evaluated four strategies for balancing
local step counts and batch sizes. Strategy 3, which solves a small MILP to minimise
the maximum idle time per round, achieves near-optimal wall-time utilisation, reducing
system idle time several times compared to other schemes. Furthermore, evaluating the
individual contributions of clients to the aggregate model in different strategies allows
identification of participants, which are dominating the joint optimisation effort.

Third, introducing Selective Multi-Head Attention (SMHA) shows that statically training
only a fraction of the model’s attention heads yields a roughly linear degradation in per-
plexity, while reducing per-iteration compute. On the other hand, dynamically growing
the attention head ratio based on per-layer redundancy metrics can further shorten train-
ing by gradually increasing the language modelling capacity of the models. Nevertheless,
care must be taken when choosing at which points the head addition occurs, to avoid a
gradual decrease in validation loss for larger models.

Finally, applying SMHA in the hardware-heterogeneous setting, so that each client trains
only a fraction of the model’s attention heads, yields a clear trade-off. By reducing
per-client mini-batch processing times, SMHA better balanced workload across silos and

58

shortened overall wall-time. However, this efficiency gain came at the cost of slower con-
vergence – the SMHA-equipped federation incurred worse validation perplexity compared
to the full-model baseline.

Nevertheless, this work has several limitations. All experiments rely on a small number of
clients, using solely the FedAvg aggregation strategy with a fixed number of communica-
tion rounds, without exploring other, possibly more robust optimisers such as FedAdam
or FedYogi (Reddi et al., 2021). Furthermore, the study was conducted on relatively
small GPT-style models (16M and 124M parameters) due to available computing re-
sources. It may not directly translate to the hundreds-of-billions-parameter regime of
state-of-the-art LLMs. Moreover, the SMHA mechanism depends on heuristic choices,
such as the redundancy threshold schedule, cooldown periods, and warmup-stable-decay
learning-rate policy, all of which may require extensive tuning for different architectures
or training budgets.

Nevertheless, there are several promising directions for future work. One avenue is to
extend the heterogeneity-resolution framework to incorporate adaptive aggregation algo-
rithms that can better leverage stale or sparse updates, such as FedProx or FedAdam.
Gradient noise scale measurements could be integrated into an automated batch-size tuner
for federated clients, dynamically balancing computation and convergence, an idea loosely
suggested by (McCandlish et al., 2018). While the thorough analysis of centralised SMHA
uncovered different levels of parameter redundancy across different layers, the same study
could be performed for its application to the federated case. Finally, this study was based
on a limited in size and simulated experimental FL setup, which does not represent real-
world deployments. Hence, validating contributions of this work with real-world cross-silo
clients – with variable network latencies, bandwidth constraints, and on very large lan-
guage models – will be crucial to assess both their practical utility and environmental
impact.

To summarise, this dissertation explored multiple methods of increasing the efficiency
of federated learning with hardware-heterogeneous clients. Combining idle time minimi-
sation with the optimisation of training and architecture hyperparameters resulted in a
trade-off between the model performance and training duration. The analysis of the ex-
periments involving various compute-saving mechanisms uncovered new exciting avenues
for further, more thorough examination.

59

Bibliography

References
Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini
Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya
Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner,
Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. 2020. Language
Models are Few-Shot Learners. arXiv preprint. ArXiv:2005.14165 [cs].

Yujing Chen, Yue Ning, Martin Slawski, and Huzefa Rangwala. 2020. Asynchronous
Online Federated Learning for Edge Devices with Non-IID Data. arXiv preprint.
ArXiv:1911.02134 [cs].

Ziheng Cheng and Margalit Glasgow. 2025. Convergence of distributed adaptive opti-
mization with local updates. Preprint, arXiv:2409.13155.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra,
Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann,
Parker Schuh, Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker
Barnes, Yi Tay, Noam Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari,
Pengcheng Yin, Toju Duke, Anselm Levskaya, Sanjay Ghemawat, Sunipa Dev, Hen-
ryk Michalewski, Xavier Garcia, Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret Zoph, Alexander Spiridonov,
Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omernick, Andrew M. Dai, Thanu-
malayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz, Erica Moreira, Rewon
Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Brennan Saeta,
Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas
Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. 2022. PaLM: Scaling Language Modeling
with Pathways. arXiv preprint. ArXiv:2204.02311 [cs].

Róbert Csordás, Kazuki Irie, Jürgen Schmidhuber, Christopher Potts, and Christopher D.
Manning. 2024a. MoEUT: Mixture-of-Experts Universal Transformers. arXiv preprint.
ArXiv:2405.16039 [cs].

Róbert Csordás, Piotr Piękos, Kazuki Irie, and Jürgen Schmidhuber. 2024b. Switch-
Head: Accelerating Transformers with Mixture-of-Experts Attention. arXiv preprint.
ArXiv:2312.07987 [cs].

Arthur Douillard, Yanislav Donchev, Keith Rush, Satyen Kale, Zachary Charles, Zachary
Garrett, Gabriel Teston, Dave Lacey, Ross McIlroy, Jiajun Shen, Alexandre Ramé,

60

https://doi.org/10.48550/arXiv.2005.14165
https://doi.org/10.48550/arXiv.2005.14165
https://doi.org/10.48550/arXiv.1911.02134
https://doi.org/10.48550/arXiv.1911.02134
https://arxiv.org/abs/2409.13155
https://arxiv.org/abs/2409.13155
https://doi.org/10.48550/arXiv.2204.02311
https://doi.org/10.48550/arXiv.2204.02311
https://doi.org/10.48550/arXiv.2405.16039
https://doi.org/10.48550/arXiv.2312.07987
https://doi.org/10.48550/arXiv.2312.07987

Arthur Szlam, Marc’Aurelio Ranzato, and Paul Barham. 2025. Streaming DiLoCo
with overlapping communication: Towards a Distributed Free Lunch. arXiv preprint.
ArXiv:2501.18512 [cs].

Arthur Douillard, Qixuan Feng, Andrei A. Rusu, Rachita Chhaparia, Yani Donchev,
Adhiguna Kuncoro, Marc’Aurelio Ranzato, Arthur Szlam, and Jiajun Shen. 2024.
DiLoCo: Distributed Low-Communication Training of Language Models. arXiv preprint.
ArXiv:2311.08105 [cs].

William Fedus, Barret Zoph, and Noam Shazeer. 2022. Switch Transformers: Scal-
ing to Trillion Parameter Models with Simple and Efficient Sparsity. arXiv preprint.
ArXiv:2101.03961 [cs].

Aaron Gokaslan and Vanya Cohen. 2019. Openwebtext corpus. http://Skylion007.
github.io/OpenWebTextCorpus.

Adriano Guastella, Lorenzo Sani, Alex Iacob, Alessio Mora, Paolo Bellavista, and
Nicholas D. Lane. 2025. SparsyFed: Sparse Adaptive Federated Training. arXiv preprint.
ArXiv:2504.05153 [cs] version: 1.

Qiaozhi He, Xiaomin Zhuang, and Zhihua Wu. 2024. Exploring Scaling Laws for Local
SGD in Large Language Model Training. arXiv preprint. ArXiv:2409.13198.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai,
Eliza Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan
Clark, Tom Hennigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan
Damoc, Aurelia Guy, Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol
Vinyals, and Laurent Sifre. 2022. Training Compute-Optimal Large Language Models.
arXiv preprint. ArXiv:2203.15556.

Rui Hu, Yanmin Gong, and Yuanxiong Guo. 2022. Federated Learning with Sparsified
Model Perturbation: Improving Accuracy under Client-Level Differential Privacy. arXiv
preprint. ArXiv:2202.07178 [cs].

Alex Iacob, Lorenzo Sani, Bill Marino, Preslav Aleksandrov, William F. Shen, and
Nicholas Donald Lane. 2024. Worldwide Federated Training of Language Models. arXiv
preprint. ArXiv:2405.14446.

Jae-young Jo and Sung-Hyon Myaeng. 2020. Roles and Utilization of Attention Heads in
Transformer-based Neural Language Models. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics, pages 3404–3417, Online. Association
for Computational Linguistics.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon
Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. 2020. Scaling Laws for
Neural Language Models. arXiv preprint. ArXiv:2001.08361.

Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. 2019. Sim-
ilarity of Neural Network Representations Revisited. arXiv preprint. ArXiv:1905.00414
[cs].

Shuaipeng Li, Penghao Zhao, Hailin Zhang, Xingwu Sun, Hao Wu, Dian Jiao, Weiyan
Wang, Chengjun Liu, Zheng Fang, Jinbao Xue, Yangyu Tao, Bin Cui, and Di Wang.
2024. Surge phenomenon in optimal learning rate and batch size scaling. Preprint,
arXiv:2405.14578.

61

https://doi.org/10.48550/arXiv.2501.18512
https://doi.org/10.48550/arXiv.2501.18512
https://doi.org/10.48550/arXiv.2311.08105
https://doi.org/10.48550/arXiv.2101.03961
https://doi.org/10.48550/arXiv.2101.03961
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
https://doi.org/10.48550/arXiv.2504.05153
http://arxiv.org/abs/2409.13198
http://arxiv.org/abs/2409.13198
http://arxiv.org/abs/2203.15556
https://doi.org/10.48550/arXiv.2202.07178
https://doi.org/10.48550/arXiv.2202.07178
https://doi.org/10.48550/arXiv.2405.14446
https://doi.org/10.18653/v1/2020.acl-main.311
https://doi.org/10.18653/v1/2020.acl-main.311
http://arxiv.org/abs/2001.08361
http://arxiv.org/abs/2001.08361
https://doi.org/10.48550/arXiv.1905.00414
https://doi.org/10.48550/arXiv.1905.00414
https://arxiv.org/abs/2405.14578

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Vir-
ginia Smith. 2020. Federated Optimization in Heterogeneous Networks. arXiv preprint.
ArXiv:1812.06127 [cs].

Ilya Loshchilov and Frank Hutter. 2019. Decoupled Weight Decay Regularization. arXiv
preprint. ArXiv:1711.05101 [cs].

Sam McCandlish, Jared Kaplan, Dario Amodei, and OpenAI Dota Team. 2018. An
Empirical Model of Large-Batch Training. arXiv preprint. ArXiv:1812.06162.

H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera y
Arcas. 2023. Communication-Efficient Learning of Deep Networks from Decentralized
Data. arXiv preprint. ArXiv:1602.05629.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving Lan-
guage Understanding by Generative Pre-Training.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael
Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2023. Exploring the limits of transfer
learning with a unified text-to-text transformer. Preprint, arXiv:1910.10683.

Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub
Konečný, Sanjiv Kumar, and H. Brendan McMahan. 2021. Adaptive federated optimiza-
tion. Preprint, arXiv:2003.00295.

Lorenzo Sani, Alex Iacob, Zeyu Cao, Royson Lee, Bill Marino, Yan Gao, Dongqi Cai,
Zexi Li, Wanru Zhao, Xinchi Qiu, and Nicholas D. Lane. 2024a. Photon: Federated LLM
Pre-Training. arXiv preprint. ArXiv:2411.02908.

Lorenzo Sani, Alex Iacob, Zeyu Cao, Bill Marino, Yan Gao, Tomas Paulik, Wanru
Zhao, William F. Shen, Preslav Aleksandrov, Xinchi Qiu, and Nicholas D. Lane.
2024b. The Future of Large Language Model Pre-training is Federated. arXiv preprint.
ArXiv:2405.10853.

Le Song, Alex Smola, Arthur Gretton, Karsten Borgwardt, and Justin Bedo. 2007. Su-
pervised Feature Selection via Dependence Estimation. arXiv preprint. ArXiv:0704.2668
[cs].

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin. 2023. Attention Is All You Need. arXiv
preprint. ArXiv:1706.03762.

Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H. Vincent Poor. 2020. Tackling
the Objective Inconsistency Problem in Heterogeneous Federated Optimization.

Zhuofan Xia, Xuran Pan, Xuan Jin, Yuan He, Hui Xue, Shiji Song, and Gao Huang. 2023.
BUDGETED TRAINING FOR VISION TRANSFORMER.

Rui Ye, Wenhao Wang, Jingyi Chai, Dihan Li, Zexi Li, Yinda Xu, Yaxin Du, Yanfeng
Wang, and Siheng Chen. 2024. OpenFedLLM: Training Large Language Models on De-
centralized Private Data via Federated Learning. arXiv preprint. ArXiv:2402.06954.

Binhang Yuan, Yongjun He, Jared Quincy Davis, Tianyi Zhang, Tri Dao, Beidi Chen,
Percy Liang, Christopher Re, and Ce Zhang. 2023. Decentralized Training of Foundation
Models in Heterogeneous Environments. arXiv preprint. ArXiv:2206.01288.

Xiaofeng Zhang, Yikang Shen, Zeyu Huang, Jie Zhou, Wenge Rong, and Zhang Xiong.

62

https://doi.org/10.48550/arXiv.1812.06127
https://doi.org/10.48550/arXiv.1711.05101
https://doi.org/10.48550/arXiv.1812.06162
https://doi.org/10.48550/arXiv.1812.06162
http://arxiv.org/abs/1602.05629
http://arxiv.org/abs/1602.05629
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/2003.00295
https://arxiv.org/abs/2003.00295
http://arxiv.org/abs/2411.02908
http://arxiv.org/abs/2411.02908
http://arxiv.org/abs/2405.10853
https://doi.org/10.48550/arXiv.0704.2668
https://doi.org/10.48550/arXiv.0704.2668
https://doi.org/10.48550/arXiv.1706.03762
https://arxiv.org/abs/2007.07481v1
https://arxiv.org/abs/2007.07481v1
http://arxiv.org/abs/2402.06954
http://arxiv.org/abs/2402.06954
http://arxiv.org/abs/2206.01288
http://arxiv.org/abs/2206.01288

2022. Mixture of Attention Heads: Selecting Attention Heads Per Token. arXiv preprint.
ArXiv:2210.05144 [cs].

63

https://doi.org/10.48550/arXiv.2210.05144

Appendix A

Code Listing

A.1 Centralised Experiments

The experimental code has been initialised with the nanoGPT project. The repository in-
cludes heavily modified training loop and new definitions of SMHA-equipped GPT models.
Furthermore, it includes software for tracking and analysing attention head redundancy,
as well as the script solving the strategy 3 optimisation problem. The exact contributed
code will be publicly available soon.

A.2 Federated Learning Experiments & Other changes

The development of the experimental setup involved several changes and adaptations to
existing codebases. The changes made in the duration of this project will be published
soon.

64

Appendix B

SMHA Ablation Study Plots

B.1 Choice of Scheduler and Model Convergence

1,000 2,000 3,000 4,000

4.5

5

Step

Tr
ai

ni
ng

Lo
ss

Validation Loss

Warmup-Stable-Decay
Cosine Annealing

0 1,000 2,000 3,000 4,000

−1

0

1

Step

%
C

ha
ng

e
Relative Change in Validation Loss

Warmup-Stable-Decay
Cosine Annealing

Figure B.1: Results from training the full model with static alphaattn = 1. Left: Val-
idation losses of the WSD and Cosine Annealing scheduler. Right: Relative change in
Validation loss between Cosine Annealing and WSD schedulers.

1,000 2,000 3,000 4,000

4.5

5

5.5

Step

Tr
ai

ni
ng

Lo
ss

Validation Loss

Warmup-Stable-Decay
Cosine Annealing

0 1,000 2,000 3,000 4,000

−2

0

2

Step

%
C

ha
ng

e

Relative Change in Validation Loss

Warmup-Stable-Decay
Cosine Annealing

Figure B.2: Results from dynamically scheduled alphaattn. Left: Validation losses of the
WSD and Cosine Annealing scheduler. Right: Relative change in Validation loss between
Cosine Annealing and WSD schedulers.

65

B.2 Attention Head Initialisation Method

1,000 2,000 3,000 4,000

4.5

5

5.5

Step

Tr
ai

ni
ng

Lo
ss

Validation Loss

Gaussian
Copy

0 1,000 2,000 3,000 4,000
−2

0

2

4

6

Step

%
C

ha
ng

e

Relative Change in Validation Loss

Gaussian
Copy

Figure B.3: Influence of the attention head initialisation scheme. Left: Validation losses
of the Gaussian and Copy schemes. Right: Relative change in Validation loss between
Copy and Gaussian schemes.

66

	Introduction
	Background
	Federated Learning
	Setup and Training Objective
	Federated Hyperparameters
	Cross-Silo Setting

	Large Language Models
	Generative Pre-Trained Transformer Architecture
	Multi-Head Attention

	Related works
	Federated Learning
	Decentralised Large Model Training
	Heterogeneous Hardware FL

	Dynamic & Sparse Transformer Architectures

	Methodology
	Problem Statement
	Federated Learning with Heterogeneous Hardware
	Minimising Client Idle Time
	Choice of the Mini-Batch Size
	Evaluation Metrics

	Selective Multi-Head Attention
	SMHA Design
	Model Comparison Metrics
	Static vs Dynamic Attention Ratio
	SMHA in Heterogeneous FL

	Experimental Setup & Design
	Experimental Setting
	Training Budget, Server Rounds and Local Steps
	Implementation

	Experiment Design
	Hardware-heterogeneous FL
	SMHA Analysis in the Centralised Setting
	SMHA in Heterogeneous FL

	Results
	Hardware-Heterogeneous FL
	Learning Rate
	Gradient Noise Scale in Federated Learning
	Heterogeneity Resolution Strategy

	Selective Multi-Head Attention
	Centralised Study
	SMHA in Hardware-Heterogeneous FL

	Conclusions and Future Work
	Bibliography
	Code Listing
	Centralised Experiments
	Federated Learning Experiments & Other changes

	SMHA Ablation Study Plots
	Choice of Scheduler and Model Convergence
	Attention Head Initialisation Method

